Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
655
всего попыток:
2445
В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?
Задачу решили:
559
всего попыток:
1600
В спешке не пропустить начало нового сериала, семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама — за 2, сынишка — за 5, а бабушка — за 10 минут. У них есть один фонарик, а мост выдерживает только двоих. За сколько минут все они смогут его перейти при лучшей организации своего движения? Условия для особо придирчивых: Если переходят двое, то они идут с меньшей из скоростей. Идти по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Бросать фонарик нельзя.
Задачу решили:
195
всего попыток:
548
Вам нужно попасть в тайную комнату. У входа в неё стоит диск (на картинке синий) с четырьмя отверстиями (на картинке жёлтыми), расположенными в вершинах квадрата. Внутри каждого отверстия спрятан переключатель, имеющий 2 положения: от центра диска (на картинке белое) и к его центру (на картинке чёрное). Разрешается засунуть руки в какие-либо 2 отверстия, пощупать, как стоят переключатели, и переключить один из них или оба. (Ничего не переключать нельзя!) После этого диск приходит в быстрое вращение, так что после его остановки уже нельзя установить, в какие именно отверстия Вы засовывали руки в прошлый раз. Дверь в комнату открывается, если во время вращения диска все переключатели стоят одинаково (все к центру или все от центра). Какое наименьшее число раз нужно засунуть руки в отверстия, чтобы гарантированно попасть в тайную комнату при полном отсутствии везения? Учтите, что исходные положения переключателей неизвестны — они могут стоять вразнобой...
Задачу решили:
414
всего попыток:
858
Какое минимальное число раз нужно сломать шоколадку, изображённую на рисунке, так, чтобы каждый кусок состоял из двух маленьких плиток или одной большой? (Ломать сразу два куска нельзя!)
Задачу решили:
363
всего попыток:
707
В ящике лежат 3 пары чёрных носков, 2 пары коричневых и 1 пара синих. Вы вынимаете носки в темноте, не видя их цвета. Какое минимальное число носков Вам придётся достать, чтобы среди них обязательно нашлись две пары, каждая из которых состоит из двух носков одного цвета? (Все носки одного размера, правые и левые не отличаются, вытащенные пары носков могут быть разных цветов.)
Задачу решили:
269
всего попыток:
525
У нас 4 монеты. Две из них — по 15 грамм, две другие — по 16. Ещё есть чашечные весы со стрелкой, показывающие разность масс грузов, положенных на чашки. За какое наименьшее число взвешиваний можно гарантированно найти хотя бы одну монету в 16 грамм?
Задачу решили:
197
всего попыток:
335
Имеется 10 кучек монет, по 10 монет в каждой. Все монеты одинаковы на вид, но одна кучка целиком состоит из фальшивых монет, но какая именно — неизвестно. Известен лишь вес настоящей монеты, а также установлено, что каждая фальшивая монета на 0,1 грамма тяжелее, чем нужно. Монеты можно взвешивать на пружинных весах со стрелкой, измеряющие вес с точностью до 0,1 грамма. Какое минимальное число взвешиваний нужно произвести, чтобы отыскать кучку, состоящую из фальшивых монет?
Задачу решили:
137
всего попыток:
209
Для кодирования натуральных чисел с помощью буквенных последовательностей был предложен следующий принцип шифрования: Числам 1, 2, 3 и 4 ставятся в соответствие буквы A, B, C и D. Последующим 16 числам ставятся в соответствие двухбуквенные коды в следующем порядке: 5=AA, 6=AB, 7=AC, 8=AD, 9=BA, 10=BB, …, 18=DB, 19=DC, 20=DD. Аналогично для последующих чисел используются трехбуквенные коды (от 21=AAA до 84=DDD), четырехбуквенные и т.д. Укажите буквенный код числа 295?
(В ответе нужно записать последовательность из латинских букв.)
Задачу решили:
74
всего попыток:
94
Через какое максимальное количество синих точек можно пройти по дороге от красной точки к зеленой при условии, что ни по какой линии между точками нельзя проходить дважды? (Можно ходить только по прямым линиям и синим точкам.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|