img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "2025 до бесконечности" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 114
всего попыток: 190
Задача опубликована: 21.05.09 21:06
Прислал: demiurgos img
Источник: Дж. Литлвуд "Математическая смесь"
Вес: 1
сложность: 5 img
баллы: 100

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

Задачу решили: 140
всего попыток: 541
Задача опубликована: 13.07.09 00:38
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: fedyakov

А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.

(См. также задачу "Прямоугольник из разных квадратов".)
+ 0
  
Это открытая задача (*?*)
Задача опубликована: 28.04.25 08:00
Прислал: kknop img
Вес: 1
сложность: 5 img
баллы: 100

Даны три попарно касающиеся внешним образом окружности. Построить окружность, которая касается их всех внутренним образом.

Сделайте это геометрической линейкой и евклидовым циркулем за как можно меньшим числом шагов (1 шаг - либо прямая, либо окружность, построенная евклидовым (схлопывающимся) циркулем.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.