img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 82
всего попыток: 234
Задача опубликована: 25.09.09 14:36
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Квадрат на плоскости разбит на 25 маленьких одинаковых квадратов, через все вершины которых проходит некоторая ломаная (возможно самопересекающаяся). Каково минимальное число её звеньев?

Задачу решили: 73
всего попыток: 215
Задача опубликована: 30.09.09 08:25
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.

+ 4
+ЗАДАЧА 235. 10 из 2009 (Г.А.Гальперин)
  
Задачу решили: 55
всего попыток: 74
Задача опубликована: 06.10.09 14:03
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?

Задачу решили: 24
всего попыток: 35
Задача опубликована: 12.10.09 13:41
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)

Задачу решили: 48
всего попыток: 174
Задача опубликована: 17.03.10 08:00
Прислал: demiurgos img
Источник: М.Гарднер "Нескучная математика"
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все прямоугольники? (Т.е. в периметре каждого прямоугольника произвольного размера не должно хватать хотя бы одной спички.)

Задачу решили: 74
всего попыток: 396
Задача опубликована: 02.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Длины трёх сторон четырёхугольника равны 25, 33 и 39. Найдите длину четвёртой стороны, при которой площадь четырёхугольника максимальна.

Задачу решили: 93
всего попыток: 217
Задача опубликована: 02.12.10 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Чему равна последняя цифра числа [1020000/(10100+3)], где [x] означает "целая часть числа x"?

Задачу решили: 20
всего попыток: 132
Задача опубликована: 24.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.

Задачу решили: 36
всего попыток: 159
Задача опубликована: 25.02.11 08:00
Прислал: ZARIF img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Shamil

Натуральные числа a и b таковы, что число — целое и . Каков максимально возможный наибольший общий делитель чисел a и b?

(Задача отредактирована, как предложил Vkorsukov.)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.