img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 170
всего попыток: 208
Задача опубликована: 14.12.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fcsm77

В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?

Задачу решили: 165
всего попыток: 428
Задача опубликована: 21.12.09 14:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Какое наименьшее число точек нужно стереть с рисунка так, чтобы нельзя было нарисовать ни одного квадрата с вершинами в оставшихся точках?

 

Задачу решили: 91
всего попыток: 240
Задача опубликована: 22.12.09 22:46
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?

Задачу решили: 66
всего попыток: 72
Задача опубликована: 08.01.10 21:54
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.

+ 26
  
Задачу решили: 49
всего попыток: 143
Задача опубликована: 16.01.10 15:52
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.

+ 55
  
Задачу решили: 129
всего попыток: 185
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 123
всего попыток: 168
Задача опубликована: 20.01.10 22:56
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: xyz (Анна Андреева)

Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.

Задачу решили: 48
всего попыток: 70
Задача опубликована: 25.01.10 16:03
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)

Задачу решили: 137
всего попыток: 191
Задача опубликована: 28.01.10 01:06
Прислал: Father img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.