img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 75
Задача опубликована: 22.02.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
баллы: 100

Если в мешке находится по 3 шара черного, белого и красного цвета, как известно, вероятность вытащить два шара, например, красного цвета в этом случае равна Pк=3/9 ·2/8=1/12, а вероятность выташить наугад два шара любого одинакового цвета P=1/4.

В нашем мешке находится некоторое количество x=n·m шаров: n различных цветов, а шаров каждого цвета ровно m штук. Нетрудно посчитать вероятность P1 выташить два шара любого одинакового цвета для этого случая. Когда в мешок добавили 52 шара нового цвета, которого в мешке не было оказалось, что вероятность P2 (для нового количества шаров и цветов) вытащить два шара одинакового цвета не изменилась, и осталось той же, что была до добавления шаров нового цвета. То есть P1=P2

Сколько всего x шаров могло находиться в таком мешке? (до добавления 52 шаров). Если вариантов xi несколько, в ответе укажите сумму всех вариантов. Необходимо учитывать разумные ограничения, что m>1 и n>1.

Задачу решили: 46
всего попыток: 55
Задача опубликована: 05.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Найти натуральное число n такое, что для углов остроугольного треугольника α, β, γ верно sin(nα)+ sin(nβ) + sin(nγ) < 0.

Задачу решили: 30
всего попыток: 55
Задача опубликована: 28.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Вовочка нашел наименьшее натуральное число, которое представяляет в виде суммы 2002 натуральных чисел, у которых одинаковая сумма цифр. Но, что удивительно, то его же можно представить в виде суммы 2003 чисел, обладающих таким же свойстовм относительно суммы цифр. Что это за число?

+ 1
+ЗАДАЧА 1463. Числа в таблице (И. Богданов, Г. Челноков)
  
Задачу решили: 27
всего попыток: 45
Задача опубликована: 02.01.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.