img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 163
всего попыток: 284
Задача опубликована: 19.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)

Задачу решили: 90
всего попыток: 436
Задача опубликована: 23.07.10 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 74
всего попыток: 108
Задача опубликована: 04.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ilkash (Илья Денисов)

Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?

Задачу решили: 126
всего попыток: 268
Задача опубликована: 13.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?

Задачу решили: 105
всего попыток: 119
Задача опубликована: 08.09.10 08:00
Прислал: PLATON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)

Задачу решили: 49
всего попыток: 520
Задача опубликована: 27.10.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Соревнование оценивается 8 судьями, каждый из которых ставит участнику  "хорошо"  или  "плохо". Известно, что для любых двух участников двое судей поставили обоим "хорошо", двое –  "хорошо"  первому и  "плохо"  второму, двое –  "плохо"  первому и  "хорошо"  второму, и двое обоим поставили  "плохо". Определите максимально возможное количество участников.

Задачу решили: 96
всего попыток: 418
Задача опубликована: 03.11.10 12:00
Прислала: Marishka24 img
Источник: Уральский турнир юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.

Задачу решили: 65
всего попыток: 99
Задача опубликована: 08.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)

Задачу решили: 41
всего попыток: 50
Задача опубликована: 08.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.

Задачу решили: 122
всего попыток: 240
Задача опубликована: 15.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.