Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
74
всего попыток:
108
Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?
Задачу решили:
46
всего попыток:
57
Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?
(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
Задачу решили:
78
всего попыток:
241
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом, а p — его основанием. А как близко друг к другу могут находиться два квартета, т.е. чему равно минимальное значение p−q, где p>q>5 — основания двух квартетов?
Задачу решили:
76
всего попыток:
113
Даны точки в пространстве с целыми координатами x, y, z, причём 0<x<2010, 0<y<2010, 0<z<2010. Для каждой такой точки напишем сумму ее наибольшей и наименьшей координаты. Чему равна сумма всех написанных чисел?
Задачу решили:
123
всего попыток:
270
На какое наибольшее количество нулей может оканчиваться произведение трёх натуральных чисел, сумма которых равна 2003?
Задачу решили:
49
всего попыток:
520
Соревнование оценивается 8 судьями, каждый из которых ставит участнику "хорошо" или "плохо". Известно, что для любых двух участников двое судей поставили обоим "хорошо", двое – "хорошо" первому и "плохо" второму, двое – "плохо" первому и "хорошо" второму, и двое обоим поставили "плохо". Определите максимально возможное количество участников.
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
78
всего попыток:
189
Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.
Задачу решили:
41
всего попыток:
50
Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.
Задачу решили:
95
всего попыток:
157
Представим сумму как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|