img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 105
всего попыток: 119
Задача опубликована: 08.09.10 08:00
Прислал: PLATON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)

Задачу решили: 78
всего попыток: 241
Задача опубликована: 10.09.10 08:00
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ilkash (Илья Денисов)

Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом, а p — его основанием. А как близко друг к другу могут находиться два квартета, т.е. чему равно минимальное значение pq, где p>q>5 — основания двух квартетов?

Задачу решили: 76
всего попыток: 113
Задача опубликована: 11.10.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Даны точки в пространстве с целыми координатами x, y, z, причём 0<x<2010, 0<y<2010, 0<z<2010. Для каждой такой точки напишем сумму ее наибольшей и наименьшей координаты. Чему равна сумма всех написанных чисел?

Задачу решили: 123
всего попыток: 270
Задача опубликована: 25.10.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

На какое наибольшее количество нулей может оканчиваться произведение трёх натуральных чисел, сумма которых равна 2003?

Задачу решили: 49
всего попыток: 520
Задача опубликована: 27.10.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Соревнование оценивается 8 судьями, каждый из которых ставит участнику  "хорошо"  или  "плохо". Известно, что для любых двух участников двое судей поставили обоим "хорошо", двое –  "хорошо"  первому и  "плохо"  второму, двое –  "плохо"  первому и  "хорошо"  второму, и двое обоим поставили  "плохо". Определите максимально возможное количество участников.

Задачу решили: 96
всего попыток: 418
Задача опубликована: 03.11.10 12:00
Прислала: Marishka24 img
Источник: Уральский турнир юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.

Задачу решили: 78
всего попыток: 189
Задача опубликована: 05.11.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.

Задачу решили: 65
всего попыток: 99
Задача опубликована: 08.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)

Задачу решили: 41
всего попыток: 50
Задача опубликована: 08.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.

Задачу решили: 95
всего попыток: 157
Задача опубликована: 12.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Представим сумму

как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.