Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
144
всего попыток:
195
Найти среднее арифметическое всех натуральных чисел, десятичная запись которых состоит из 4-х четвёрок, 6-ти шестёрок и 9-ти девяток, записанных в любом порядке. (Например, 4699644466669999999.)
Задачу решили:
170
всего попыток:
568
Двенадцать солдат должны как можно быстрее вернуться в свою часть, находящуюся от них в 17 км по просёлочной дороге. Друг одного из солдат берётся подвезти их на своём джипе, но одновременно он может взять лишь четверых. Скорость идущих пешком солдат — 5 км/ч, а джипа — 60 км/ч (дорога, увы, неважная). Через сколько минут все солдаты смогут вернуться в часть при наилучшей организации своего движения? Временем, затраченным на пересадки, можно пренебречь.
Задачу решили:
160
всего попыток:
618
Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?
Задачу решили:
269
всего попыток:
324
В качестве первого члена последовательности возьмём любое натуральное число, кратное трём. Все остальные её члены получаются по правилу: каждое следующее число равно сумме кубов всех цифр предыдущего. Оказывается, что в любой такой последовательности рано или поздно появляется некое число, которое уже не меняется. Найдите это число.
Задачу решили:
194
всего попыток:
292
Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)
Задачу решили:
277
всего попыток:
480
Какое наибольшее количество месяцев одного года могут иметь по 5 пятниц?
Задачу решили:
108
всего попыток:
195
В ряд записаны 2009 различных целых положительных чисел. Известно, что для любого натурального n≤2009 сумма любых n чисел, записанных подряд, делится на n. Найдите наименьшее значение суммы всех 2009 чисел.
Задачу решили:
249
всего попыток:
355
Три приятеля увлекаются плаванием. Первый тренируется регулярно через 3 дня (на четвёртый), второй — через 4, третий — через 5. В те дни, когда нет тренировок, они все вместе выходят на прогулку. Как-то они не выходили на прогулку три дня подряд (сначала тренировался первый, потом — второй, а затем — третий). Какое наибольшее число дней подряд они смогут выходить на прогулку?
Задачу решили:
143
всего попыток:
485
Муха в полдень села на секундную стрелку часов и поехала, придерживаясь следующих правил: если она обгоняет какую-то стрелку или её обгоняет какая-то стрелка (кроме секундной, у часов есть часовая и минутная стрелки), то муха переползает на эту стрелку. Сколько кругов проедет муха в течение часа?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|