img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 44
всего попыток: 249
Задача опубликована: 13.07.11 08:00
Прислал: Vkorsukov img
Источник: На основе задач 595 и 603; совместно с volina...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ROMARINA (Lyubov Dudina)

В оранжерее на космической станции в виде прямоугольника 23×31 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 713 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.

Задачу решили: 95
всего попыток: 117
Задача опубликована: 12.08.11 08:00
Прислала: Nana img
Источник: Новосибирская областная олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Хорда удалена от центра окружности на расстояние 60. В каждый из двух полученных сегментов вписан квадрат так, что пара его соседних вершин лежит на хорде, а другая пара вершин — на соответствующей дуге окружности. Найдите разность длин сторон квадратов.

Задачу решили: 101
всего попыток: 154
Задача опубликована: 02.09.11 08:00
Прислал: demiurgos img
Источник: problems.ru
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

На окружности отмечены четыре точки ABи D так, что хорды AC и BD перпендикулярны друг другу, а AB=4, BC=8 и CD=13. Найдите площадь четырёхугольника ABCD.

Задачу решили: 52
всего попыток: 359
Задача опубликована: 07.09.11 08:00
Прислал: Vkorsukov img
Источник: Задача 628
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4 и CD=13. Сколько различных целочисленных значений может принимать площадь четырёхугольника ABCD с такими условиями?

Задачу решили: 86
всего попыток: 111
Задача опубликована: 19.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак, Математический кружок
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

В клетках шахматной доски 8×8 расставлены n фишек так, что любой квадрат 3×3 содержит в точности одну фишку. Найдите произведение наибольшего и наименьшего значений n.

Задачу решили: 112
всего попыток: 309
Задача опубликована: 24.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак "Математический кружок"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Какое наибольшее число сторон может быть у многоугольника, являющегося пересечением треугольника и четырёхугольника?

Задачу решили: 58
всего попыток: 501
Задача опубликована: 28.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутри выпуклого четырёхугольника с периметром 60 отмечена точка. Найдите наибольшее целое значение суммы четырёх расстояний от неё до вершин четырёхугольника.

Задачу решили: 46
всего попыток: 84
Задача опубликована: 07.12.11 08:00
Прислал: Artsakh img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

В остроугольном треугольнике АВС отрезки ВО и СО (где О - центр описанной окружности) продолжены до пересечения в точках D и Е со сторонами АС и АВ треугольника. Оказалась, что угол BDE равен 50 градусам, угол CED равен 30 градусов. Найдите величину самого большого угла треугольника АВС в градусах.

Задачу решили: 108
всего попыток: 152
Задача опубликована: 16.12.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

В треугольнике ABC BC = a, CA = b, AB = c. Найдите градусную меру угла B, если a = c и a2 = b2 + ba.

Задачу решили: 82
всего попыток: 176
Задача опубликована: 02.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: altist (Альтист Данилов)

В треугольнике ABC BC:CA:AB = 3:5:4. На отрезке AB выбрана точка E, а на AC точка F, причем AE:AF = 3:2. Пусть M - середина BC, Q - пересечение AM и EF. Найти значение
120·|QE|/|QF|.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.