img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 226
всего попыток: 250
Задача опубликована: 19.04.10 08:00
Прислала: IrineK img
Источник: по Я.И.Перельману
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Водитель автомашины грубо нарушил правила дорожного движения, чему свидетелями стали три студента-математика. Номер они не запомнили, но сообщили следующее: 1) номер был четырехзначный; 2) две первые цифры были одинаковы; 3) две последние цифры также были одинаковы; 4) это четырёхзначное число являлось точным квадратом. Помогите сотрудникам автоинспекции понять математиков и определите номер машины.

Задачу решили: 103
всего попыток: 222
Задача опубликована: 03.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.

Задачу решили: 93
всего попыток: 174
Задача опубликована: 14.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Биссектрисы углов трапеции делят каждое из её оснований на три равные части. Найдите среднюю линию трапеции, если её высота равна . (Трапеция — это четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.)

Задачу решили: 90
всего попыток: 436
Задача опубликована: 23.07.10 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 79
всего попыток: 153
Задача опубликована: 26.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n213n+47, если n пробегает все целые числа от −20102010 до 20102010?

Задачу решили: 68
всего попыток: 156
Задача опубликована: 28.07.10 08:00
Прислала: Marishka24 img
Источник: Межвузовская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.

Задачу решили: 174
всего попыток: 469
Задача опубликована: 30.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Nikitos7991

Марина оказалась на Острове Рыцарей и Лжецов (рыцари всегда говорят правду, лжецы всегда лгут). Марина знает язык островитян, вот только не помнит, какое из двух слов "кыр" и "мыр" значит "да", а какое — "нет". Перед Мариной два мешка. В одном — золото, в другом — медь. Рядом сидит островитянин (неизвестно, рыцарь или лжец). Какое наименьшее число вопросов Марина должна ему задать, чтобы узнать, в каком из мешков находится золото?

Задачу решили: 46
всего попыток: 57
Задача опубликована: 06.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?

(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
Задачу решили: 78
всего попыток: 241
Задача опубликована: 10.09.10 08:00
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ilkash (Илья Денисов)

Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом, а p — его основанием. А как близко друг к другу могут находиться два квартета, т.е. чему равно минимальное значение pq, где p>q>5 — основания двух квартетов?

Задачу решили: 76
всего попыток: 113
Задача опубликована: 11.10.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Даны точки в пространстве с целыми координатами x, y, z, причём 0<x<2010, 0<y<2010, 0<z<2010. Для каждой такой точки напишем сумму ее наибольшей и наименьшей координаты. Чему равна сумма всех написанных чисел?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.