Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
126
всего попыток:
268
Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?
Задачу решили:
105
всего попыток:
119
В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)
Задачу решили:
78
всего попыток:
241
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом, а p — его основанием. А как близко друг к другу могут находиться два квартета, т.е. чему равно минимальное значение p−q, где p>q>5 — основания двух квартетов?
Задачу решили:
76
всего попыток:
113
Даны точки в пространстве с целыми координатами x, y, z, причём 0<x<2010, 0<y<2010, 0<z<2010. Для каждой такой точки напишем сумму ее наибольшей и наименьшей координаты. Чему равна сумма всех написанных чисел?
Задачу решили:
123
всего попыток:
270
На какое наибольшее количество нулей может оканчиваться произведение трёх натуральных чисел, сумма которых равна 2003?
Задачу решили:
78
всего попыток:
189
Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
41
всего попыток:
50
Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.
Задачу решили:
95
всего попыток:
157
Представим сумму как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?
Задачу решили:
122
всего попыток:
240
Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|