Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Задачу решили:
58
всего попыток:
63
Внутри прямоугольника ABCD расположена точка P так, что |PB|=2, |PC|=3, |PD|=5. Найти |PA|2.
Задачу решили:
70
всего попыток:
111
Найти размер синей площади на рисунке.
Задачу решили:
43
всего попыток:
55
В четырёх прямоугольниках с соотношением сторон (отношение длины к ширине) 3, 5, 7 и 8 соответственно, проведены диагонали. Найти сумму всех четырёх острых углов пересечения диагоналей в этих прямоугольниках в градусах.
Задачу решили:
55
всего попыток:
60
Найти минимальный радиус круга, в котором можно поместить без наложений 7 кругов радиуса 1?
Задачу решили:
51
всего попыток:
131
Найти диаметр полуокружности:
Задачу решили:
68
всего попыток:
85
В шестиугольнике все внутренние углы равны, известны длины некоторых сторон (они указаны на рисунке). Найти длину стсроны, отмеченную знаком вопроса.
Задачу решили:
53
всего попыток:
54
К стороне AB квадрата ABCD прилегает прямоугольный треугольник ABM так, что AB является гипотенузой. Расстояние от точки M до центра квадрата O (точка пересечения диагоналей квадрата) равно 10 см. Найти площадь четырехугольника AOBM.
Задачу решили:
29
всего попыток:
70
К стороне АВ квадрата АВСD примыкает прямоугольный треугольник АВМ (АВ-гипотенуза, М расположена внутри квадрата). Расстояние МО=10 см (О является точкой пересечения диагоналей квадрата). Найти площадь четырехугольника АОМВ, определив минимальный целочисленный размер стороны квадрата в см для данного условия. Ответ округлить до целого.
Задачу решили:
71
всего попыток:
88
Найдите площадь желтого прямоугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|