Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
143
всего попыток:
264
У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)
Задачу решили:
127
всего попыток:
209
В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)
Задачу решили:
111
всего попыток:
137
Возьмём четырёхзначное число, у которого не все четыре цифры одинаковые, и составим из него два других: в первом выпишем цифры числа в порядке убывания, во втором — в порядке возрастания. Вычтем меньшее число из большего. Продолжая переставлять цифры и вычитать, замечаем, что на одном из шагов полученное число "зацикливает" процесс. Что это за число? (Если вдруг на каком-то шаге получается трёхзначное число, то слева к нему приписываем нуль.)
Задачу решили:
113
всего попыток:
437
Четыре друга — Алёша, Боря, Валера и Гриша — бегали на лыжах по кругу. Алёша бежал быстрее Бори, Боря быстрее Валеры, а Валера быстрее Гриши. Стартовали и финишировали друзья одновременно, но Алёша 1 раз обогнал Борю, Боря 1 раз обогнал Валеру, а Валера 1 раз обогнал Гришу. Сколько раз Алёша обогнал Гришу?
Задачу решили:
115
всего попыток:
154
Найдите минимальное натуральное число, которое уменьшается в 19 раз, если в его десятичной записи поменять местами первую и третью цифры.
Задачу решили:
164
всего попыток:
347
Сумма нескольких натуральных чисел равна 25. Найдите наибольшее возможное значение их произведения.
Задачу решили:
146
всего попыток:
229
Трое братьев вскапывали огород. После работы их встретил отец.
Задачу решили:
128
всего попыток:
297
Рассматриваются все натуральные числа n от 1 до 2010 включительно. Для скольких из них число nn является квадратом целого числа?
Задачу решили:
132
всего попыток:
232
Из деревни Каспениада в другие деревни можно попасть двумя способами:
Задачу решили:
85
всего попыток:
191
Синоптик Сеня Невезучий утверждает, что на протяжении одного года шесть раз первый вторник месяца был солнечным, а первый вторник после первого понедельника того же месяца — пасмурным. Какое наибольшее число раз такое действительно могло случиться в течение одного года?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|