Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
24
Круги радиуса 1 наложены друг на друга так, что их границы образуют квадратную кружевную салфетку, изображенную на рисунке, причем центры кругов расположены в узлах квадратной решетки. Найдите площадь фигуры, являющейся объединением 322 таких кругов. В ответе укажите целую часть этой площади (антье).
Задачу решили:
13
всего попыток:
29
В прямоугольник с целочисленными взаимно простыми длинами сторон вписан прямоугольник с различными целочисленными сторонами так, что все его углы лежат на различных сторонах исходного четырехугольника. Одна из сторон вписанного четырехугольника в 2 раза меньше одной из сторон исходного. Минимально возможный (по площади) такой четырехугольник имеет размеры 10x11 со вписанным четырехугольником 5х10. Найдите вторую минимально возможную площадь исходного четырехугольника.
Задачу решили:
14
всего попыток:
42
Одни и те же четыре фигуры – два треуольника и два полиомино – складываются двумя способами в виде "большого треугольника", по такому принципу: 1. Все вершины фигур лежат в узлах квадратной сетки. На самом деле, "большой треугольник" здесь иллюзорен. Угол AKB в одном случае чуть меньше, а в другом чуть больше 180 градусов на одинаковую величину.
Можно повторить тот же фокус и с другой четвёркой фигур – парой треугольников и парой полиомино, складывая их в "большой треугольник" двумя способами по этому же принципу.
В данном примере площадь треугольника ABC (если предположить, что AB это не ломаная, а отрезок) равна 32,5.
Найдите четвёрку таких фигур с минимальной площадью треугольника ABC ("выпрямленного"), при которой абсолютная величина отклонения угла AKB от 180 градусов будет меньше чем в исходном примере. В ответе введите эту площадь.
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника.
Задачу решили:
26
всего попыток:
35
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|