Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
126
всего попыток:
189
Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?
Задачу решили:
66
всего попыток:
95
На окружности с центром в т.O выбраны точки A и B так, что угол AOB=90°. На бОльшей дуге AB произвольным образом выбрана точка С (будем считать, что B и С лежат по одну сторону от прямой AO) через которую проведена касательная к нашей окружности. Из точек A и B проведены перпендикуляры к этой касательной, пересекающие ее в точках D и E соответственно. Причем оказалось, что |AD|=686, а |BE|=252. Найдите радиус окружности |AO|.
Задачу решили:
110
всего попыток:
133
Дан треугольник ABC, где ?BAC = 60?. Точка S — середина биссектрисы AD. Известно, что ?SBA = 30?. Найдите DC/BS.
Задачу решили:
30
всего попыток:
380
Известно, что радиус вписанной в треугольнике окружности равен 6, а радиус описанной около него окружности равен 65/3.
Задачу решили:
91
всего попыток:
109
Дан треугольник АВС, у которого сторона |BC|=3. На стороне BC отложена точка D, так, что |BD|=2. Чему равно значение |AB|2+2 |AC|2-3 |AD|2?
Задачу решили:
66
всего попыток:
141
В выпуклом четырёхугольнике ABCD углы ABC, BCD, DBC и ACD равны 990, 360, 810 и 90 соответственно. Найдите величину угла DAC в градусах.
Задачу решили:
40
всего попыток:
48
Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.
Задачу решили:
49
всего попыток:
66
2013 окружностей на плоскости проведены так, что любые две из
Задачу решили:
52
всего попыток:
109
В равнобедренный треугольник ABC с периметром P вписан ромб со стороной a. Одна сторона ромба лежит на основании, другая, смежная, – на боковой стороне треугольника. P и a – целые числа; площади ромба и треугольника относятся друг к другу как 4:9. Найдите такое значение a, при котором |P-100| минимально. В качестве ответа укажите сумму периметра ΔABC и стороны ромба (P+a).
Задачу решили:
79
всего попыток:
88
Дан треугольник ABC со сторонами |AB|=13; |AC|=21, |BC|=16. На сторонах AB и AC построены равносторонние треугольники ABM и ACN, как это показано на рисунке. Вычислить расстояние между точками M и N.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|