img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 20
всего попыток: 25
Задача опубликована: 06.05.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.

Задачу решили: 18
всего попыток: 18
Задача опубликована: 07.06.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Отец задал уравнение вундеркинду Васе для решения в натуральных числах x3y-xy3=2023. Вася, решив устно эадачу, назвал количество пар решений (x, y). Требуется в подробном решении выяснить, как решил задачу Вася?

+ 2
  
Задачу решили: 12
всего попыток: 17
Задача опубликована: 10.06.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности.

Снежинки

Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность  1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.

Задачу решили: 7
всего попыток: 18
Задача опубликована: 21.06.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2657
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?

Перекрасить собаку

+ 1
  
Задачу решили: 22
всего попыток: 25
Задача опубликована: 26.06.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: user033 (Олег Сopoкин)

По кругу стоят 7 диванов, на них сидит всего 50 человек, на каждом диване - хотя бы один человек. Каждый сказал:"На следующем по часовой стрелке диване ровно половина людей выше меня, а ровно половина - ниже." Какое наибольшее число людей могло сказать правду?

Задачу решили: 9
всего попыток: 15
Задача опубликована: 08.07.24 08:00
Прислал: TALMON img
Источник: По мотивам задачии 2668
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

За какое минимальное количество ходов можно из фигуры А змейки Рубика:

Хитрая змейка Рубика

получить фигуру Б?

Хитрая змейка Рубика

Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.

Задачу решили: 22
всего попыток: 23
Задача опубликована: 05.08.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

(√15 + √21 + √25 + √35)/(√3 + √7 + √20)=(√a + √b)/2, где a и b - натуральные числа. Найдите их сумму.

Задачу решили: 21
всего попыток: 28
Задача опубликована: 07.08.24 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Взаимно простые целые числа x, y и z удовлетворяют следующим условиям:

x2+y2+z2=2xy+2yz+2zx

0<z<y<x<12345

Найти наибольшее значение x.

Задачу решили: 22
всего попыток: 29
Задача опубликована: 12.08.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25.

Парабола и четырехугольник

Найдите абсциссу вершины D этого четырехугольника.

Задачу решили: 19
всего попыток: 30
Задача опубликована: 21.08.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для каждого натурального N>1 определены:
f(N) – произведение всех натуральных делителей N.
g(N) – логарифм f(N) по основанию Ν.

Найдите максимальное N, меньшее 12345, для которого g(N) нецело.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.