img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 2
+ЗАДАЧА 2335. Три лягушки (А. В. Шаповалов)
  
Задачу решили: 36
всего попыток: 46
Задача опубликована: 20.05.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: геометрияimg
Лучшее решение: vochfid

Три лягушки на болоте прыгнули по очереди. Каждая приземлялась точно в середину отрезка между двумя другими. Длина прыжка второй лягушки 70 см. Найдите длину прыжка третьей лягушки в см.

Задачу решили: 21
всего попыток: 36
Задача опубликована: 17.10.22 08:00
Прислал: TALMON img
Источник: По предложению коллеги Sam777e, по мотивам за...
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: avilow (Николай Авилов)

Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000.

Квадраты в квадрате-2

На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.

Задачу решили: 13
всего попыток: 29
Задача опубликована: 09.11.22 08:00
Прислал: TALMON img
Источник: С. Шеннон и С. Водовоз
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg

Правильный пятиугольник имеет сторону длины n, n∈N. Все стороны пятиугольника разделены точками на единичные отрезки. В этот пятиугольник вписаны n-1 правильных пятиугольников, все вершины которых находятся в точках деления.
При этом исходный пятиугольник оказался разделен на части.

Пятиугольники в пятиугольнике

На рисунке приведен правильный пятиугольник со стороной 7, в который вписаны 6 меньших правильных пятиугольников.

Найдите количество таких n (1<n<200), для которых количество полученных частей НЕ равно 5*(n-1)2+1.

Задачу решили: 25
всего попыток: 54
Задача опубликована: 14.01.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: andervish (Андрей Вишневый)

В параллелограмм вписана елочка так, как показано на рисунке.

Елочка в параллелограмме

Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.  

Задачу решили: 28
всего попыток: 54
Задача опубликована: 06.02.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: user033 (Олег Сopoкин)

Четыре деревни расположены в вершинах квадрата стороной 2 км. Между ними построены дороги. В ответе укажите наименьшаую суммарную протяженность в метрах, округлив ее до ближайшего целого.

Задачу решили: 12
всего попыток: 16
Задача опубликована: 24.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей.

Деление плоскости на части

На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?

Задачу решили: 15
всего попыток: 25
Задача опубликована: 13.03.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Sam777e

В выпуклом четырехугольнике два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. Какое наименьшее количество данных о длинах нужно для нахождения площади четырехугольника?

Задачу решили: 18
всего попыток: 30
Задача опубликована: 25.09.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Kf_GoldFish

Касательно по внешнему контуру синей окружности располагаются одинаковые красные окружности. Которые в свою очередь касаются по внутреннему контуру зеленой окружности. Каждая красная окружность также касается двух соседних красных окружностей. На рисунке изображен пример для 4 красных окружностей.

Подшипник

Пусть N - это минимальное количество красных окружностей, при котором их суммарная площадь будет меньше площади синей окружности.

Пусть M - это минимальное количество красных окружностей при котором их удвоенная суммарная площадь будет меньше площади зеленой окружности.

Найдите N+M.

Задачу решили: 17
всего попыток: 28
Задача опубликована: 06.10.23 08:00
Прислал: Kf_GoldFish img
Источник: По мотивам задачи 2400
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32.

Треугольники в треугольнике

Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.

Задачу решили: 21
всего попыток: 31
Задача опубликована: 01.01.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

Найдите наименьшее целое число L, что в квадрат L × L можно поместить прямоугольник 1 × 2024.

С НОВЫМ ГОДОМ!

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.