Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
135
всего попыток:
195
В сплошном шаре сверлится вертикальное цилиндрическое отверстие, ось которого проходит через центр шара. Высота полученного тела равна 6 см. Сколько см3 составляет его объём? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
77
всего попыток:
279
Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?
Задачу решили:
77
всего попыток:
126
Рассмотрим ряд Тейлора функции: f(x) = 1/(1-x-x²) в окрестности x=0. Чему равен коэффициент этого ряда при x10?
Задачу решили:
51
всего попыток:
141
Найдите максимальное целочисленное значение длины диагонали многогранника, если сумма длин его рёбер равна 2012.
Задачу решили:
42
всего попыток:
113
Через маленький населённый пункт Грюнхаузен проходит по прямой линии оживлённая трасса федерального значения. Жители городка добились наконец постройки объездной дороги. График показывает участок карты, на которой прямая через точки А и C — бывшая трасса, а линия, проходящая через красные точки — новая объездная дорога. Все расстояния даны в километрах. Новая дорога проходит через точки A, B, C и в точке А плавно переходит в старую трассу. Эта дорога описывается полиномом третьего порядка с рациональными коэффициентами. Закрашенная область – собственно городок. Его северная граница соответствует параболе c рациональными коэффициентами. Граница городка проходит через точки D,E и F. Участок земли, находящийся между новой дорогой, северной границей городка и прямолинейными участками старой трассы (до пунктов А и C), будет использован под промзону. Сколько денег получит городская казна при продаже участка по цене 10.95 евро за квадратный метр? Ответ представьте в миллионах евро, округлив до ближайшего целого числа.
Задачу решили:
37
всего попыток:
133
В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.
Задачу решили:
30
всего попыток:
406
Дан треугольник ABC. Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC. Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED. Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE. И так далее по алфавиту почти до конца: последний треугольник - WXY. Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?
Задачу решили:
40
всего попыток:
48
Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.
Задачу решили:
67
всего попыток:
164
Если x=0,99999999999999999999 (двадцать девяток после запятой), то чему равна целая часть значения выражения: x/1 + x2/2 + x3/3 + . . . ?
Задачу решили:
47
всего попыток:
116
Тройка действительных чисел (x, y, z) удовлетворяет условию x2 + y2 + z2 = 1. Пусть максимальное значение, которое принимает выражение (x2 - y2)(y2 - z2)(z2 - x2), равно M. Найдите 1/M2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|