img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 60
всего попыток: 114
Задача опубликована: 16.04.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько существует пятизначных чисел-палиндромов, делящихся на 11?

Задачу решили: 27
всего попыток: 218
Задача опубликована: 25.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество упорядоченных наборов целых чисел (a1, a2, ..., a8), удовлетворяющих следующим условиям:
(i) 0 < a1 < a3 < a5 < a7 < 9
(ii) 0 < a2 < a4 < a6 < a8 < 9
(iii) a2i - 1 < a2i (i = 1, 2, 3, 4)

Задачу решили: 54
всего попыток: 104
Задача опубликована: 02.06.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Среди пятизначных чисел с цифрами от 1 до 4 найдите количество тех, у которых никакие две соседние цифры не отличаются ровно на единицу.

Задачу решили: 68
всего попыток: 107
Задача опубликована: 03.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?

Задачу решили: 40
всего попыток: 155
Задача опубликована: 18.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?

Задачу решили: 57
всего попыток: 64
Задача опубликована: 02.03.16 08:00
Прислал: admin img
Вес: 3
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: petrakomplekt (Жирайр Казарян)

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды посчитали количество карт между ней и такой же картой второй колоды (т. е. сколько карт между семерками червей, между дамами пик, и т. д.). Чему равна сумма 36 полученных чисел?

Задачу решили: 38
всего попыток: 42
Задача опубликована: 30.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг.

В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?

Задачу решили: 31
всего попыток: 50
Задача опубликована: 21.12.16 08:00
Прислал: admin img
Вес: 3
сложность: 1 img
класс: 8-10 img
баллы: 100

Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.

Задачу решили: 31
всего попыток: 52
Задача опубликована: 09.10.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На окружности размещены 10 точек. Найдите количество вариантов соединения всех точек попарно 5-ю непересекающимися хордами. 

Задачу решили: 34
всего попыток: 50
Задача опубликована: 11.10.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Все 20 клеток в ряду закрашивают в красный и синий цвета так, чтобы не было рядом более чем 2 клетки одного цвета. Найдите количество вариантов такой раскраски.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.