img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 74
Задача опубликована: 23.02.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).

Задачу решили: 53
всего попыток: 65
Задача опубликована: 18.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Пусть x, y, z ≥ 0 и x+y+z=1. Найдите максимум x(x+y)2(y+z)3(z+x)4.

Задачу решили: 48
всего попыток: 69
Задача опубликована: 22.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Чтобы стать настоящим нагонским рыбаком, каждый кандидат должен:

- поймать одну рыбу в первый день;

- поймать 4 рыбы и 5 крабов во второй день;

- поймать 25 рыб и 20 крабов в третий день;

- поймать 90 рыб и 99 крабов в четвертый день;

- поймать 329 рыб и 400 крабов в пятый день;

...

и так далее в соответствии с таинственным нагонским законом.

В итоге за первые 11 дней кандидат должен поймать общее количество морской живности, которое выражается формулой: a*3b+1 (a и b - целые числа; a≠3n для всех натуральных n).

Найдите a+b.

Задачу решили: 24
всего попыток: 344
Задача опубликована: 04.05.15 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника.  Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник?

Задачу решили: 62
всего попыток: 95
Задача опубликована: 11.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти квадрат площади треугольника с высотами равными 3, 4 и 5.

Задачу решили: 37
всего попыток: 85
Задача опубликована: 27.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Рассмотрим все функция f такие, что
f(x+2)+f(x)+f(x-2)=f(x+1)+f(x-1).

Найти наименьшее положительное число, являющееся периодом для всех f,

Задачу решили: 46
всего попыток: 66
Задача опубликована: 15.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В прямоугольник ABCD (|AB|=36, |BC|=60) вписан прямоугольник KLMN (точки K и L расположены соответственно на сторонах AB и BC), при это |BL|<|LC|. Найти максимально возможное значение |BL|. 

Задачу решили: 58
всего попыток: 127
Задача опубликована: 06.07.15 08:00
Прислал: putout img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В окружность вписан равносторонний треугольник А1В1С1 с площадью S1. У второго равностороннего треугольника А2В2С2 с площадью S2 вершины А2 и С2 также лежат на окружности, а В2 – середина отрезка А1С1 (см. рисунок).

Учитывая, что А1В1||А2В2, найдите S1/S2. В ответе укажите значение [10•S1/S2].

Задачу решили: 35
всего попыток: 73
Задача опубликована: 27.07.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Три вершины треугольника с длинами сторон  a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20.  Найдите минимальное возможное значение произведения a•b•c.

Задачу решили: 40
всего попыток: 85
Задача опубликована: 19.08.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для натуральных k, n и m известно, что k+n+m=2006. На какое минимальное число нулей заканчивается число k!•n!•m!?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.