Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
113
всего попыток:
122
Сейчас мне вдвое больше лет, чем было вам тогда, когда мне было столько, сколько вам сейчас; когда же вам будет столько лет, сколько мне сейчас, то сумма наших лет будет равна 63. Сколько в сумме нам лет сейчас?
Задачу решили:
107
всего попыток:
148
Катер проплывает мимо острова с постоянной скоростью. Расстояния до острова в 8, 10 и 11 часов были равны 7, 5 и 11 километров соответственно. Каким будет расстояние в 12 часов?
Задачу решили:
81
всего попыток:
115
3 литра воды разлили в два сосуда. Из каждого сосуда поочереди переливают половину воды, находящейся в нем, в другой сосуд. Найдите отношение объема воды в сосуде с меньшим количеством к объему воды в сосуде с большим после 100 переливаний. Объемы воды в литрах округлите с точностью до 1 миллилитра.
Задачу решили:
33
всего попыток:
189
Лева клонирует любимую овечку. Имя клона формируется на основе даты (день месяца, день недели, год) клонирования: первые 2 символа - заглавные буквы латинского алфавита, третий - номер дня недели, далее, "_" и год. Все буквы в алфавитном порядке занумерованы, начиная с 1. Из пары букв имени одна должна быть гласной (A, E, I, O, U, W, Y), другая - согласной и сумма их номеров должна равняться числу (дню) в месяце. Так для клона, произведенного 20 сентября 2013г., в пятницу, имя может иметь вид SA5_2013. За один день нельзя сделать больше одного клона. Если имена должны быть уникальными, какое максимальное количество клонов может произвести на свет Лева за 2012-2013 годы?
Задачу решили:
111
всего попыток:
149
Решите уравнение (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.
Задачу решили:
62
всего попыток:
69
Функция f определена на множестве всех натуральных чисел, принимает значения в множестве натуральных чисел, и одно из её значений равно 1. Кроме того известно, что для любого натурального n выполнено равенство f(n+f(n)) = f(n). Найдите f(2014).
Задачу решили:
92
всего попыток:
160
У торговцев Пети и Васи было по 30 пирожков. Они начали продавать их по 30 рублей. Если у одного из них покупают пирожок, другой немедленно снижает цену на свои пирожки на один рубль (пирожки продаются только по одному, и такого, чтобы они продавали по пирожку одновременно, не бывает). Сколько денег выручат в сумме Петя и Вася, когда продадут все свои пирожки?
Задачу решили:
32
всего попыток:
72
Найти количество целых чисел n (1 ≤ n ≤ 300) для которых существует многочлен степени n с целыми коэффициентами, коэффициентом при xn равен 1, а его значение при любых целых значениях x, не делится на n.
Задачу решили:
43
всего попыток:
180
На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.
Задачу решили:
77
всего попыток:
127
Найти сумму всех целых чисел m и n таких, что log (nm) = log m * log n и log m и log n - целые числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|