Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
52
На окружности размещены 10 точек. Найдите количество вариантов соединения всех точек попарно 5-ю непересекающимися хордами.
Задачу решили:
34
всего попыток:
50
Все 20 клеток в ряду закрашивают в красный и синий цвета так, чтобы не было рядом более чем 2 клетки одного цвета. Найдите количество вариантов такой раскраски.
Задачу решили:
22
всего попыток:
125
Сколько существует способов разломать плитку шоколада размера 6x4 на части 2x1?
Задачу решили:
24
всего попыток:
80
Восстановите два недостающих символа в данной последовательности букв или цифр: ВДН?ВД?БИЦ.
Задачу решили:
36
всего попыток:
41
Из коробки, в которой лежали 3 красные и 2 синие шляпы, достали 3 шляпы и одели их на трех человек, которые не знали какого цвета на них шляпа, но видели цвет шляп на соседях. Когда двоих спросили, знают ли они какого цвета у них шляпы, то оба ответили нет. Какая шляпа на третьем человеке?
Задачу решили:
97
всего попыток:
109
В соревновании участвовало 20 спортсменов. Каждому из них было предложено заранее угадать, какое место он займёт. Петя сказал, что он займёт последнее место. 19 спортсменов заняли места похуже, чем они предполагали. Какое место занял Петя?
Задачу решили:
58
всего попыток:
107
14 школьников ходят в разные кружки. В кружке может быть не менее 3 школьников, при этом каждый школьник ходит не более чем в 2 кружка и нет ни одного кружка, в котором один состав школьников. Какое максимальное количество кружков может быть?
Задачу решили:
25
всего попыток:
37
Имеется 25 гирек весом от 1 до 25 грамм. Вы знаете вес каждой гирьки. За какое минимальное количество взвешиваний вы сможете при помощи чашечных весов доказать, что знаете вес хотя бы одной гирьки?
Задачу решили:
21
всего попыток:
21
Султан усомнился в математических способностях некоторых своих придворных мудрецов и посадил 20 из них в одиночные камеры. Каждая камера имела свой номер – от 1 до 20. Султан разрешил каждому из них выйти на свободу, если они обнаружат номер своей камеры среди разложенных у него на столе 20 конвертов, в каждом из которых находился листок с номером от 1 до 20. Мудрецам (каждому из них) разрешалось открыть любые 12 конвертов (то есть, давалось 12 попыток) и достаточно было обнаружить среди них номер своей камеры, чтобы выйти на свободу. После этого мудрец клал все листочки обратно в конверты и порядок конвертов, лежащих на столе не нарушался. И отправлялся либо на свободу, либо обратно в камеру уже до конца своих дней - в зависимости от успеха. А в комнату вызывался следующий мудрец. Более того, великий султан, проявляя неслыханную доброту и человеколюбие, разрешил мудрецам перед тем, как начать саму процедуру их вызова по одному к столу с лежащими на нём в ряд конвертами, проинструктировать своего адвоката, которому разрешалось прийти предварительно (до вызова мудрецов) в комнату, открыть и посмотреть содержимое всех конвертов и, при желании, поменять местами (единожды) любые два конверта. После этого адвокат покидает комнату и уже не общается больше с мудрецами. Смогут ли мудрецы придумать какой-нибудь план действий (включая инструкцию адвокату), который позволит им всем гарантированно выйти на свободу и подтвердить султану свою академическую состоятельность?
Задачу решили:
55
всего попыток:
73
Троих подозреваемых (1, 2 и 3) спросили, кто из них украл серебряные ложки. Один из них всегда говорит правду, второй всегда говорит правду, кроме случая, когда он в чем-то виноват и ему задают прямой вопрос об его вине, то он уклоняется от прямого ответа, хотя и не врет, а третий - лжец, который в ответ на любой вопрос врет и при этом может как уклоняться или не уклоняться от ответа. Всем им был задан вопрос "Виновны ли Вы в краже?"
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|