Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
23
всего попыток:
117
Найдите наименьшее натуральное число, представимое в виде суммы 10-и различных натуральных слагаемых с одинаковой суммой цифр и в виде суммы 11-и различных натуральных слагаемых с одинаковой суммой цифр.
Задачу решили:
35
всего попыток:
37
Найти сумму цифр натурального числа 3N, если известно, что сумма цифр в десятичной записи N равна 100, а сумма цифр числа 44n равна 800.
Задачу решили:
34
всего попыток:
37
Для конечного множества чисел известно, что среди любых трех чисел имеются два, сумма которых принадлежит этому множеству. Найти наибольшее число элементов в множестве.
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
44
всего попыток:
52
Найдите количество троек натуральных чисел x, y, z таких, что (x+1)y+1+1=(x+2)z+1.
Задачу решили:
51
всего попыток:
60
Последовательность (an) задана следующим правилом: a1=1, Найти минимальное n>1, когда an=1.
Задачу решили:
46
всего попыток:
92
Какое число находится на третьем месте в упорядоченном множестве M таких натуральных чисел, делящихся на 225, в записи которых использованы только цифры 0 и 8?
Задачу решили:
43
всего попыток:
86
Сколько есть чисел, состоящих из цифр от 1 до 9 (каждая цифра входит 1 раз), которые делятся нацело на 99?
Задачу решили:
29
всего попыток:
64
У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|