img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 414
всего попыток: 858
Задача опубликована: 03.09.09 10:22
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Какое минимальное число раз нужно сломать шоколадку, изображённую на рисунке, так, чтобы каждый кусок состоял из двух маленьких плиток или одной большой? (Ломать сразу два куска нельзя!)

Задачу решили: 363
всего попыток: 707
Задача опубликована: 09.10.09 10:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Random (Руслан Головин)

В ящике лежат 3 пары чёрных носков, 2 пары коричневых и 1 пара синих. Вы вынимаете носки в темноте, не видя их цвета. Какое минимальное число носков Вам придётся достать, чтобы среди них обязательно нашлись две пары, каждая из которых состоит из двух носков одного цвета? (Все носки одного размера, правые и левые не отличаются, вытащенные пары носков могут быть разных цветов.)

Задачу решили: 269
всего попыток: 525
Задача опубликована: 29.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: NNN

У нас 4 монеты. Две из них — по 15 грамм, две другие — по 16. Ещё есть чашечные весы со стрелкой, показывающие разность масс грузов, положенных на чашки. За какое наименьшее число взвешиваний можно гарантированно найти хотя бы одну монету в 16 грамм?

Задачу решили: 197
всего попыток: 335
Задача опубликована: 23.05.11 08:00
Прислал: Xardas img
Источник: М.Гарднер "Математические головоломки и развл...
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

Имеется 10 кучек монет, по 10 монет в каждой. Все монеты одинаковы на вид, но одна кучка целиком состоит из фальшивых монет, но какая именно — неизвестно. Известен лишь вес настоящей монеты, а также установлено, что каждая фальшивая монета на 0,1 грамма тяжелее, чем нужно. Монеты можно взвешивать на пружинных весах со стрелкой, измеряющие вес с точностью до 0,1 грамма. Какое минимальное число взвешиваний нужно произвести, чтобы отыскать кучку, состоящую из фальшивых монет?

Задачу решили: 137
всего попыток: 209
Задача опубликована: 02.05.12 08:00
Прислал: serjant1995 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Для кодирования натуральных чисел с помощью буквенных последовательностей был предложен следующий принцип шифрования: Числам 1, 2, 3 и 4 ставятся в соответствие буквы A, B, C и D. Последующим 16 числам ставятся в соответствие двухбуквенные коды в следующем порядке: 5=AA, 6=AB, 7=AC, 8=AD, 9=BA, 10=BB, …, 18=DB, 19=DC, 20=DD. Аналогично для последующих чисел используются трехбуквенные коды (от 21=AAA до 84=DDD), четырехбуквенные и т.д. Укажите буквенный код числа 295?

(В ответе нужно записать последовательность из латинских букв.)
Задачу решили: 74
всего попыток: 94
Задача опубликована: 28.06.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Через какое максимальное количество синих точек можно пройти по дороге от красной точки к зеленой при условии, что ни по какой линии между точками нельзя проходить дважды? (Можно ходить только по прямым линиям и синим точкам.)

Задачу решили: 58
всего попыток: 107
Задача опубликована: 23.02.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

14 школьников ходят в разные кружки. В кружке может быть не менее 3 школьников, при этом каждый школьник ходит не более чем в 2 кружка и нет ни одного кружка, в котором один состав школьников. Какое максимальное количество кружков может быть?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.