Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
85
Рассмотрим все функция f такие, что Найти наименьшее положительное число, являющееся периодом для всех f,
Задачу решили:
46
всего попыток:
66
В прямоугольник ABCD (|AB|=36, |BC|=60) вписан прямоугольник KLMN (точки K и L расположены соответственно на сторонах AB и BC), при это |BL|<|LC|. Найти максимально возможное значение |BL|.
Задачу решили:
58
всего попыток:
127
В окружность вписан равносторонний треугольник А1В1С1 с площадью S1. У второго равностороннего треугольника А2В2С2 с площадью S2 вершины А2 и С2 также лежат на окружности, а В2 – середина отрезка А1С1 (см. рисунок). Учитывая, что А1В1||А2В2, найдите S1/S2. В ответе укажите значение [10•S1/S2].
Задачу решили:
36
всего попыток:
75
Три вершины треугольника с длинами сторон a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20. Найдите минимальное возможное значение произведения a•b•c.
Задачу решили:
40
всего попыток:
42
В треугольнике ABC |AB|=|AC|, точки D и E выбраны на сторонах AB и AC соответственно так, что |AD|=|DB|, |AE|=|EC|. Точка F расположена на прямой DE так, что треугольники ABC и BFA конгруэнтны. Найдите (|AB|/|BC|)2.
Задачу решили:
35
всего попыток:
64
Длины сторон треугольника ABC равны: |AB| = 43 |AC| = 45 |BC| = 4 Точка O - центр окружности описанной около треугоьника ABC. Точка Q - центр окружности описанной около треугоьника, вершины которого - середины сторон треугольника ABC. D и E - точки на прямой BC. Отрезки OD и QE перпендикулярны прямой BC. Найдите длину отрезка DE.
Задачу решили:
37
всего попыток:
71
В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB соответственно в точках D и E. Разность углов <ADE - <AED равна 60 градусов. Найти угол ACB в градусах.
Задачу решили:
43
всего попыток:
47
На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно. При этом |AK| = |BK|, а |KM| = 5, найдите |AN|
Задачу решили:
42
всего попыток:
54
Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.
Задачу решили:
38
всего попыток:
41
Назовем медианой системы 2n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2016 точек, никакие три из которых не лежат на одной прямой?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|