Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
206
Вычислите минимум функции , где — такие неотрицательные действительные числа, что , а . В ответе укажите значение , округлённое до ближайшего целого.
Задачу решили:
130
всего попыток:
147
Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 — пятая степень натурального числа.
Задачу решили:
78
всего попыток:
183
Найдите все натуральные (целые положительные) решения уравнения . В ответе укажите сумму всех возможных значений .
Задачу решили:
22
всего попыток:
101
Через точку на окружности единичного радиуса (r=1) проведена прямая на расстоянии от ее центра . На прямой вне окружности и слева от точки отметим на расстоянии от нее точку , а на расстоянии слева от точки - точку и проведем через них окружности с центром в т. так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник . Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. Если и натуральные числа, существует точек и соответствующих им точек таких, что площади всех треугольников равны, причем . Найдите все такие точки , в ответе укажите сумму соответствующих им .
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
101
всего попыток:
116
Найдите максимально возможное значение выражения x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа.
Задачу решили:
33
всего попыток:
63
Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.
Задачу решили:
67
всего попыток:
101
Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|