img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 98
всего попыток: 212
Задача опубликована: 24.12.10 12:00
Прислала: KATEHbKA img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Найдите наибольшее n, для которого число 3·33·333·...·33...3 (в десятичной записи последнего множителя ровно 2010 троек) делится на 3n.

Задачу решили: 86
всего попыток: 110
Задача опубликована: 31.12.10 08:00
Прислала: KATEHbKA img
Источник: International Mathematics Competition for Uni...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

В квадратную таблицу n×n записаны все натуральные числа от 1 до n2 в следующем порядке: числа от 1 до n — в первой сверху строке слева направо, числа от n+1 до 2n — во второй сверху строке слева направо, и т. д. Выберем n чисел из этой таблицы так, чтобы из каждой строки было выбрано ровно 1 число и из каждого столбца было выбрано ровно 1 число. Какие значения может принимать сумма всех выбранных нами чисел? В ответе запишите сумму всех возможных значений при n=2011.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.