Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
56
всего попыток:
191
На какое наименьшее количество частей надо разрезать арбуз так, чтобы после того, как будет съедена мякоть - останется ровно 7 корок. (Ломать корки в процессе поедания нельзя, только есть мякоть.)
Задачу решили:
37
всего попыток:
55
В компании из 9 мушкетёров некоторые поссорились и вызвали друг друга на дуэль. Известно, что среди них нет трех таких, что все они должны драться друг с другом. Какое максимальное число мушкетёров при любой комбинации гарантированно не поссорятся друг с другом.
Задачу решили:
74
всего попыток:
94
Через какое максимальное количество синих точек можно пройти по дороге от красной точки к зеленой при условии, что ни по какой линии между точками нельзя проходить дважды? (Можно ходить только по прямым линиям и синим точкам.)
Задачу решили:
31
всего попыток:
52
На окружности размещены 10 точек. Найдите количество вариантов соединения всех точек попарно 5-ю непересекающимися хордами.
Задачу решили:
34
всего попыток:
50
Все 20 клеток в ряду закрашивают в красный и синий цвета так, чтобы не было рядом более чем 2 клетки одного цвета. Найдите количество вариантов такой раскраски.
Задачу решили:
22
всего попыток:
125
Сколько существует способов разломать плитку шоколада размера 6x4 на части 2x1?
Задачу решили:
47
всего попыток:
95
Ярослав, Костя и Настя играют в быстрые шахматы. В одно время играют двое, проигравшего заменяет тот, кто не играл. Ярослав выиграл 10 раз, Костя - 21. Какое минимаьное число раз могли мальчики сыграть между собой?
Задачу решили:
26
всего попыток:
38
Шесть химиков синтезировали 6 новых химических веществ - у каждого есть ровно 1 грамм своего нового вещества. Когда два химика встречаются, они складывают запасы всех имеющихся у них в этот момент веществ, делят их поровну и забирают себе по половине. После 8 таких встреч оказалось, что у каждого из химиков есть не менее чем x грамм каждого вещества. Найдите наибольшее возможное значение x.
Задачу решили:
58
всего попыток:
107
14 школьников ходят в разные кружки. В кружке может быть не менее 3 школьников, при этом каждый школьник ходит не более чем в 2 кружка и нет ни одного кружка, в котором один состав школьников. Какое максимальное количество кружков может быть?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|