Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
36
всего попыток:
179
12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.
Задачу решили:
44
всего попыток:
128
Найдите количество различных пар натуральных чисел m и n таких, что 1/m + 1/n = 1/100000.
Задачу решили:
47
всего попыток:
69
Для пяти натуральных чисел n1,>n2>n3>n4>n5 таких, что Найти сумму всех ni всех возможных решений.
Задачу решили:
67
всего попыток:
76
Найдите число состоящее из 10 различных цифр (0, 1, ..., 9), которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., 10.
Задачу решили:
62
всего попыток:
140
На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом: 1. Детишки не могут одни находиться на плоту. 2. Шериф не может оставлять заключенного с остальными. 3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной. 4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек. Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Задачу решили:
64
всего попыток:
120
Пусть p(n) является произведением всех делителей для целого положительного n (включая 1 и n). Будем число n называть "особым", если p(n)=n2. Найдите сумму первых пяти особых чисел.
Задачу решили:
55
всего попыток:
69
Найти два разных натуральных числа m и n, таких что
Задачу решили:
106
всего попыток:
111
АБВГД х 4 --------- ДГВБА Найти АБВГД.
Задачу решили:
53
всего попыток:
70
Найти сумму всех натуральных n таких, что [n2/3] является простым. [x] - целая часть числа x.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|