Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
97
всего попыток:
127
Когда в конце года учитель подводил результаты, то заметил что только 10 учеников получили в течение года хотя бы одну двойку, 9 учеников получили не менее двух двоек, 8 - не менее трех и т. д., а один ученик получил 10 двоек. Больше 10 двоек никто из учеников не получал. Сколько всего двоек в этом классе получили все ученики?
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Задачу решили:
38
всего попыток:
403
Два десятичных числа сложили в "столбик" ABC Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?
Задачу решили:
41
всего попыток:
57
В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Задачу решили:
33
всего попыток:
55
N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Задачу решили:
14
всего попыток:
29
У вас 31 монетка, 2 из них фальшивые и имеют одинаковый вес (настоящие монетки также имеют одинаковый вес). Вы знаете какие именно и что они легче, а приятель знает, что фальшивых монеток ровно 2, но не знает легче они или тяжелей. За какое количество взвешиваний на чашечных весах без гирь и как вы сможете показать приятелю, что они легче и предъявить их?
Задачу решили:
38
всего попыток:
123
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
Задачу решили:
25
всего попыток:
31
Есть 6 монет - 2 по одному центу, 2 по одному евроценту и 2 по копейке (монетки подписаны), причем в каждой паре есть одна настоящая и одна фальшивая. Все настоящие монетки весят одинаково и все фальшивые тоже, при этом все фальшивые - тяжелее. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить все фальшивые и как?
Задачу решили:
32
всего попыток:
56
Среди 100 жителей осторова есть те, кто всегда говорят правду и те, кто всегда лгут. На вопрос гостя острова о том, сколько жителей осторова говорят правду, все жители дали ответы, при этом n-й по счету отвечающий утверждал, что на острове количество говорящих правду равно n2 по модулю 100. Сколько на острове лжецов?
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|