Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
68
На дне рождения присутствовало 100 гостей. Первому достался кусок торта размером 1%, второму 2% от оставшейся части, третьему - 3% от оставшейся части и так далее. Какой по счету гость получил наибольший кусок?
Задачу решили:
38
всего попыток:
53
±(x-1)±(x-1)±(x-1)±...±(x-1)=2018 (выражение x-1 встречается 2018 раз). Найти количество целых решений?
Задачу решили:
58
всего попыток:
69
В квадрате ABCD на сторонах выбраны точки E, F, G, H так, что |EA|=|FB|=|GC|=|HD|. Квадрат разделен на части как указано на рисунке. Известны площади трёх частей, найдите площадь четвертой.
Задачу решили:
55
всего попыток:
75
Внутри окружности проведены линии, как на рисунке. Найдите радиус окружности.
Задачу решили:
37
всего попыток:
61
Класс из 16 человек писал математический тест, в котором к каждому заданию предлагались 4 возможных варианта ответа. После сдачи решений выяснилось, что ни у каких двух учеников не совпало более одного ответа. Какое наибольшее число заданий могло быть в таком тесте?
Задачу решили:
29
всего попыток:
34
Треугольник ABC вписан в окружность. Точки M и H такие, что отрезок AM является диаметром, а отрезок AH перпендикулярен стороне BC. Докажите, что |BH|=|MC|.
Задачу решили:
33
всего попыток:
52
На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Задачу решили:
28
всего попыток:
45
Как много целых значений a удовлетворяет неравенству:
Задачу решили:
21
всего попыток:
79
Имеется двое песочных часов: одни отмеряют 9 минут, вторые - 22 минуты. Какое миинимальное количество раз их нужно перевернуть, чтобы отмерить 33 минуты?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|