Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
28
Какое минимальное количество клеток можно закрасить черным в белом квадрате 300x300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?
Задачу решили:
14
всего попыток:
29
У вас 31 монетка, 2 из них фальшивые и имеют одинаковый вес (настоящие монетки также имеют одинаковый вес). Вы знаете какие именно и что они легче, а приятель знает, что фальшивых монеток ровно 2, но не знает легче они или тяжелей. За какое количество взвешиваний на чашечных весах без гирь и как вы сможете показать приятелю, что они легче и предъявить их?
Задачу решили:
38
всего попыток:
123
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
Задачу решили:
36
всего попыток:
56
У выпуклого многогранника 30 граней, и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?
Задачу решили:
33
всего попыток:
68
Найти максимальное натуральное число n ≤ 100 для которого найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn — целые.
Задачу решили:
53
всего попыток:
83
По окружности радиуса 40 катится колесо радиуса 18. В колесо вбит гвоздь, который ударяясь об окружность, оставляет на ней отметки. Сколько всего таких отметок оставит гвоздь на окружности? Сколько раз прокатится колесо по всей окружности, прежде чем гвоздь попадет в уже отмеченную ранее точку? Ответ введите в виде рациональной дроби (количество отметок)/(количество оборотов), например, 15/10.
Задачу решили:
67
всего попыток:
75
Найдите сумму всех натуральных n > 1 для которых n3 − 3 делится на n − 1.
Задачу решили:
44
всего попыток:
55
Найдите все пары взаимно простых чисел a и b (a > b), для которых (a + b)/(a2 − ab + b2) = 3/13. В ответе укажите сумму значений всех пар (ai+bi).
Задачу решили:
58
всего попыток:
63
Пятиугольник ABCDE делится отрезком BD на ромб ABDE и равносторонний треугольник BCD. Чему равен угол ACE (в градусах)?
Задачу решили:
53
всего попыток:
87
Пусть S(n) - сумма цифр натурального числа в десятичной записи. Найдите максимальное число не превосходящее 2015, которое может быть представлено в виде n+S(n).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|