Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
86
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины — его сын, а справа — его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
Задачу решили:
42
всего попыток:
54
Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на любой горизонтали, вертикали и диагонали находилось четное число фишек?
Задачу решили:
30
всего попыток:
45
В правильном десятиугольнике ABCDEFGHIJ со стороной 1 проведена прямая Q1Q2, так что в треугольнике Q1AQ2: |Q1A|+|AQ2|=1. Найдите сумму всех углов в градусах, под которыми виден отрезок Q1Q2 из всех вершин за исключением вершины A.
Задачу решили:
44
всего попыток:
57
Найти количество корней уравнения sin(sin(sin(sin(x))))=cos(cos(cos(cos(x)))).
Задачу решили:
44
всего попыток:
48
В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
88
всего попыток:
108
Найдите сумму углов x+y+z в градусах.
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
28
всего попыток:
29
Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3.
Задачу решили:
73
всего попыток:
236
На какое максимальное количество частей можно разрезать кольцо тремя прямыми разрезами?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|