img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 58
Задача опубликована: 28.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть P(x)=x2016±x2015±...±x±1 многочлен с коэффициентами ±1. Известно, что у него нет действительных корней. Какое максимальное количество коэффициентов -1 у него может быть?

Задачу решили: 29
всего попыток: 44
Задача опубликована: 11.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найти сумму всех таких целых чисел b, что уравнение [x2]-2012x+b=0 имеет нечетное число корней, [x] - целая часть числа x.

Задачу решили: 41
всего попыток: 68
Задача опубликована: 13.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти количество целых неотрицательных решений уравнения [x/n]=[x/(n+1)], n - натуральное, [x] - целая часть x. В ответе укажите количество решений для n = 1000.

Задачу решили: 41
всего попыток: 86
Задача опубликована: 16.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть a, b, c, d - натуральные числа. Найти минимум выражения
[(a+b+c)/d] + [(b+c+d)/a] + [(c+d+a)/b] + [(d+a+b)/c], где [x] - целая часть x. 

Задачу решили: 21
всего попыток: 105
Задача опубликована: 20.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти количество действительных решений уравнения x3-[x3]-{x}3=0 для 1≤x<2015, где [x] и {x} - целая и дробная части числа x.

Задачу решили: 67
всего попыток: 88
Задача опубликована: 27.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что [x]*{x}=178, где [x] и {x} - соответственно целая и дробная части x, найти [x2]-[x]2.

Задачу решили: 88
всего попыток: 186
Задача опубликована: 02.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Три десятичных числа сложили в "столбик"

  AAA
+ BBB
  ССС
------
  DDD

Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?

Задачу решили: 28
всего попыток: 118
Задача опубликована: 09.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?

Задачу решили: 47
всего попыток: 71
Задача опубликована: 23.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Sam777e

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).

Задачу решили: 47
всего попыток: 49
Задача опубликована: 28.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и P(19) = P(94) = 1994.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.