Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
57
Даны числа 1, 2,..., N, каждое из которых окрашено либо в черный, либо в белый цвет. Разрешается перекрашиватьв противоположный цвет любые три числа, одно из которых равно полусумме двух других. Найти минимальное N при которо можно сделать все числа белыми?
Задачу решили:
25
всего попыток:
35
Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные — по 100 г. За какое минимальное количество взвешиваний на весах со стрелкой и делениями по 1 грамму можно определить все 99-граммовые детали?
Задачу решили:
45
всего попыток:
60
Натуральное число n > 8 назовем хорошим, если каждое из чисел n, n+1, n+2 и n+3 делится на сумму своих цифр. Некоторое хорошее число заканчивается цифрой 8. Какая предпоследняя цифра у него?
Задачу решили:
44
всего попыток:
64
По двум пересекающимся дорогам с равными постоянными скоростями движутся два автомобиля. Оказалось, что как в 17.00, так и в 18.00 первый находился в два раза дальше от перекрестка, чем второй. Через какое наибольшее количество минут после 17:00 второй автомобиль мог проехать перекресток?
Задачу решили:
35
всего попыток:
37
Выпуклый многоугольник разрезают непересекающимися диагоналями на остроугольные треугольники. Какое максимальное количество способов возможно.
Задачу решили:
39
всего попыток:
56
Найдите все такие пары (x, y) натуральных чисел, что x + y = an, x2 + y2 = am для некоторых натуральных a, n, m. В ответе укажите количество таких пар, в которых оба числа меньше 100.
Задачу решили:
42
всего попыток:
50
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее числом игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью — одно, за поражение — ноль?
Задачу решили:
42
всего попыток:
54
Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на любой горизонтали, вертикали и диагонали находилось четное число фишек?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|