Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
48
В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.
Задачу решили:
35
всего попыток:
37
Найти сумму цифр натурального числа 3N, если известно, что сумма цифр в десятичной записи N равна 100, а сумма цифр числа 44n равна 800.
Задачу решили:
34
всего попыток:
37
Для конечного множества чисел известно, что среди любых трех чисел имеются два, сумма которых принадлежит этому множеству. Найти наибольшее число элементов в множестве.
Задачу решили:
44
всего попыток:
52
Найдите количество троек натуральных чисел x, y, z таких, что (x+1)y+1+1=(x+2)z+1.
Задачу решили:
51
всего попыток:
60
Последовательность (an) задана следующим правилом: a1=1, Найти минимальное n>1, когда an=1.
Задачу решили:
28
всего попыток:
29
Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3.
Задачу решили:
58
всего попыток:
96
В равнобедренном треугольнике ABC угол при вершине CAB расен 20°. Из вершин B и C провели прямые линии так, что угол MBC равен 60°, а угол NCB равен 70°. Найдите угол MNC в градусах.
Задачу решили:
72
всего попыток:
88
На сторонах треугольника достроены квадраты. Найти площадь шестиугольника с розовыми сторонами.
Задачу решили:
28
всего попыток:
52
Найти максимальное количество областей пересечений 2017 эллипсов.
Задачу решили:
50
всего попыток:
57
В треугольнике |BA1|=|A1A2|=|A2C|, |AC1|=|C1B|, |C1Y|=4. Найти |XY|.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|