img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 69
всего попыток: 91
Задача опубликована: 22.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: marzelik

Решить уравнение k+1/(m+1/n)=30/7, где k, m, n - натуральные числа. Чему равно k+m+n?

Задачу решили: 46
всего попыток: 54
Задача опубликована: 24.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Натуральное число N имеет M делителей, а M - N/2 делителей. Сколько делителей имет N+2M?

Задачу решили: 44
всего попыток: 80
Задача опубликована: 26.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сумма нескольких простых чисел равна их произведению. Найти максимально возможное количество таких чисел.

Задачу решили: 50
всего попыток: 77
Задача опубликована: 31.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех натуральных чисел N, что каждое такое число делится на все натуральные числа не превосходящие N1/2.

 

Задачу решили: 29
всего попыток: 36
Задача опубликована: 07.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Определим расстояние между числами a1a2a3a4a5 и b1b2b3b4b5  максимальное i, для которого ai ≠ bi. Найти минимально возможную сумму расстояний между всеми соседними пятизначными числами, расположенными, расположенными в некотором порядке.

Задачу решили: 35
всего попыток: 64
Задача опубликована: 14.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Комплект из 4-х действительных чисел назовем хорошим, если любое число комплекта может быть представлено произведением двух других чисел комплекта. Найдите количество хороших комплектов. (Комплекты с перестановкой чисел считаются за один).

+ 2
+ЗАДАЧА 1418. Степени (А. Ковальджи, В. Сендеров)
  
Задачу решили: 37
всего попыток: 39
Задача опубликована: 19.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти максимальное n такое, что при некотором натуральном k>1 существуют взаимно простые числа a и b для которых верно равенство: ak+bk=3n.

Задачу решили: 77
всего попыток: 84
Задача опубликована: 03.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Известно, что для действительных чисел n и m верны следующие равенства n=m+1, n4=m4. Найти n.

Задачу решили: 72
всего попыток: 92
Задача опубликована: 07.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

На прямой отмечено несколько точек. После этого между любыми двумя соседними точками добавили по точке. Такую операцию повторили 3 раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале?

Задачу решили: 67
всего попыток: 78
Задача опубликована: 12.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Каждое из 50 чисел увеличили на 1 и при этом сумма их квадратов не изменилась. Потом все числа ещё раз увеличили на 1.  На сколько изменится сумма квадратов на этот раз?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.