Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
79
всего попыток:
140
Разговаривают 2 математика. 1: Я задумал 2 разных однозначных числа. Угадай их сумму. 2: Я не могу. 1: Хорошо, вот подсказка - их произведение заканчивается на цифру, которая яляется номером твоего дома. 2: Тогда я знаю сумму этих чисел. А вы знаете?
Задачу решили:
45
всего попыток:
86
X и Y - четное и нечетное натуральные числа такие, что X2=2017... и Y2=2017... Найти наименьшее значение X+Y.
Задачу решили:
55
всего попыток:
83
Даны 6 различных натуральных чисел. Рассмотрим их попарные суммы. Какое максимальное количество простых чисел могут составлять эти суммы?
Задачу решили:
44
всего попыток:
146
Найти количество натуральных решений уравнения x2+10!=y2.
Задачу решили:
68
всего попыток:
76
Вовочка сложил 2 числа, а потом в выражении поменял местами 2 цифры так, что в итоге оказалась неверная запись: 314159 + 291828 = 585787. Найдите исходную сумму чисел.
Задачу решили:
75
всего попыток:
94
Натуральное число при делениии на 2009 и 2010 имеет одинаковый остаток 35. Какой остаток будет при делении его на 42?
Задачу решили:
67
всего попыток:
72
Чашечные весы у которых левое плечо короче, будут находяться в равновесии, если на правую чашку поставить гирьку весом 9 грамм, а слева - некоторую эталонную гирьку. Если же эталонную гирьку поставить на правую чашку, то для равновесия на левую чашку нужно поставить гирьку 16 грамм. Найти вес эталонной гирьки.
Задачу решили:
49
всего попыток:
81
У Вовы и Маши есть банк из 1000 карточек, за один ход Вова может взять 306 карточек, а Маша положить 221 карточку. Вместе они хотят оставить в банке минимальное количество карточек. За какое минимальное количество ходов они смогут это сделать?
Задачу решили:
67
всего попыток:
81
Какое минимальное количество целых чисел необходимо, чтобы сумма их пятых степеней была равна 28?
Задачу решили:
93
всего попыток:
103
Найти наименьшее натуральное число, которое заканчивается на 17, делится на 17 и имеет сумму цифр равную 17.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|