Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
69
всего попыток:
91
Решить уравнение k+1/(m+1/n)=30/7, где k, m, n - натуральные числа. Чему равно k+m+n?
Задачу решили:
35
всего попыток:
64
Комплект из 4-х действительных чисел назовем хорошим, если любое число комплекта может быть представлено произведением двух других чисел комплекта. Найдите количество хороших комплектов. (Комплекты с перестановкой чисел считаются за один).
Задачу решили:
58
всего попыток:
97
Красная Шапочка вышла днем к бабушке в X часов Y минут и пришла в Y часов Z минут, потратив на дорогу Z часов X минут. Чему равно X?
Задачу решили:
77
всего попыток:
84
Известно, что для действительных чисел n и m верны следующие равенства n=m+1, n4=m4. Найти n.
Задачу решили:
61
всего попыток:
88
Странные часы - где верх и низ на них не понятно, часовая, минутная и секундная стрелки - одинаковые. Стрелки А и Б указывают на часовые отметки, а стрелка В чуть не дошла до часовой отметки. Сколько прошло минут с начала текущего часа?
Задачу решили:
72
всего попыток:
92
На прямой отмечено несколько точек. После этого между любыми двумя соседними точками добавили по точке. Такую операцию повторили 3 раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале?
Задачу решили:
67
всего попыток:
78
Каждое из 50 чисел увеличили на 1 и при этом сумма их квадратов не изменилась. Потом все числа ещё раз увеличили на 1. На сколько изменится сумма квадратов на этот раз?
Задачу решили:
42
всего попыток:
46
Найти минимальное натуральное число N такое, что число записанное теми же цифрами в обратном порядке равно 2N/3.
Задачу решили:
25
всего попыток:
31
Есть 6 монет - 2 по одному центу, 2 по одному евроценту и 2 по копейке (монетки подписаны), причем в каждой паре есть одна настоящая и одна фальшивая. Все настоящие монетки весят одинаково и все фальшивые тоже, при этом все фальшивые - тяжелее. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить все фальшивые и как?
Задачу решили:
88
всего попыток:
108
Найдите сумму углов x+y+z в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|