Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
20
всего попыток:
33
Суммы цифр натуральных чисел N и N+1 кратны 22. Найдите наименьшее число N.
Задачу решили:
25
всего попыток:
28
Вовочка в понедельник купил 1 мороженое, 2 пирожных и 3 мармеладки и заплатил за это 235 рублей. Во чторник он купил 3 порции мороженого, 2 пирожных и 1 мармеладку и заплатил за это 205 рублей. Сколько рублей должен будет заплатить Вовочка в среду, если он купит 6 порций мороженого, 5 пирожных и 4 мармеладки?
Задачу решили:
25
всего попыток:
25
К двузначному числу слева приписали 1, а справа 8, в итоге оно увеличилось в 28 раз. Найдите сумму всех таких двузначных чисел.
Задачу решили:
24
всего попыток:
29
Найдите наибольшее натуральное число, которое в 9 раз больше своего остатка от деления на 1024.
Задачу решили:
22
всего попыток:
22
Сумма двух чисел равна 2024, если к первому числу справа дописать 1, а во втором убрать последнюю цифру 5, то в сумме новые числа дадут 2272. Найдите наибольшее из исходных чисел.
Задачу решили:
25
всего попыток:
25
В пятизначном числе зачеркнули одну цифру и сложили получившееся число с исходным. В результате получилось 54321. Найдите исходное число.
Задачу решили:
23
всего попыток:
27
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
26
всего попыток:
26
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое и так далее числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое и так далее числа. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
24
всего попыток:
33
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Задачу решили:
21
всего попыток:
28
Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|