Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
105
X, Y, Z - различные натуральные числа. Известно, что количественные числительные, входящие в названия этих чисел (по-русски), состоят из шести букв каждое. Также известно, что X+Y - простое, Y+Z кратно 3, а X+Y+Z - точный квадрат. Найдите наименьшее возможное произведение X*Y*Z.
Задачу решили:
57
всего попыток:
80
Студенты института физкультуры пять раз сдавали один и тот же зачет по арифметике. Те, кто не сдал зачет, приходили следующий раз. Каждый раз зачет сдавала треть всех пришедших студентов и еще треть студента. Какое наименьшее количество студентов, так и не сдали зачёт за пять раз?
Задачу решили:
71
всего попыток:
96
В числе 2018! сложили все цифры и получили новое число, затем в нем также сложили все цифры и так далее, пока не осталось число состоящее из одной цифры. Что это за число?
Задачу решили:
65
всего попыток:
69
На картинке вместо крестиков могут быть любые цифры кроме 7. Чему равно произведение?
Задачу решили:
46
всего попыток:
55
Сколько 8-значных палиндромов не являются простыми числами?
Задачу решили:
32
всего попыток:
56
Среди 100 жителей осторова есть те, кто всегда говорят правду и те, кто всегда лгут. На вопрос гостя острова о том, сколько жителей осторова говорят правду, все жители дали ответы, при этом n-й по счету отвечающий утверждал, что на острове количество говорящих правду равно n2 по модулю 100. Сколько на острове лжецов?
Задачу решили:
50
всего попыток:
87
Вовочка после возвращения из деревни Гадюкина сказал, что там действительно идут дожди. Всего за время его нахождения в деревне дождь шел 10 раз, при этом если он шел до обеда, то после обеда дождя не было и наоборот, если он шёл после обеда, то утром того же дня было солнечно. За всё время Солнце светило 7 дней до обеда и 9 после обеда. Какое наименьшее количество дней Вовочка мог быть в Гадюкино?
Задачу решили:
61
всего попыток:
70
Натуральные числа от 1 до 17 расположены так, что сумма любых двух соседних чисел является полным квадратом. Найдите сумму первого и последнего числа в этой последовательности.
Задачу решили:
46
всего попыток:
54
В целом числе последняя цифра 8, когда ее переставили в начало, то число стало в два раза больше. Найдите минимальное такое число.
Задачу решили:
80
всего попыток:
87
На пирамиде пишутся числа так, что число, лежащее на каждом верхнем камне равно сумме чисел на камнях, лежащих под ним. Вычислите число на самом верху.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|