Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
79
всего попыток:
153
Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n2−13n+47, если n пробегает все целые числа от −20102010 до 20102010?
Задачу решили:
68
всего попыток:
156
Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.
Задачу решили:
113
всего попыток:
135
Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.
Задачу решили:
77
всего попыток:
112
Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?
Задачу решили:
126
всего попыток:
159
Пусть n — натуральное число, а S(n) — сумма цифр числа n. Сколько решений имеет уравнение n+S2(n)=2011?
Задачу решили:
105
всего попыток:
187
Если от натурального числа отнять квадрат суммы его цифр, какое наименьшее число может получиться?
Задачу решили:
87
всего попыток:
127
В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?
Задачу решили:
109
всего попыток:
131
В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n?
Задачу решили:
81
всего попыток:
121
Сколько существует натуральных чисел, кубы которых не представимы в виде разности квадратов двух целых чисел?
Задачу решили:
79
всего попыток:
168
Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|