img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 46
всего попыток: 57
Задача опубликована: 06.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?

(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
Задачу решили: 123
всего попыток: 270
Задача опубликована: 25.10.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

На какое наибольшее количество нулей может оканчиваться произведение трёх натуральных чисел, сумма которых равна 2003?

Задачу решили: 78
всего попыток: 189
Задача опубликована: 05.11.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.

Задачу решили: 122
всего попыток: 240
Задача опубликована: 15.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?

Задачу решили: 90
всего попыток: 286
Задача опубликована: 24.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonidr321 (Леонид Розенблат)

Двузначное число записали три раза подряд. Получилось шестизначное число. Какое наибольшее количество натуральных делителей (включая единицу и само число) может иметь это шестизначное число?

Задачу решили: 63
всего попыток: 184
Задача опубликована: 26.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Чему равно максимальное количество подряд идущих членов последовательности xn=n²+2010, наибольший общий делитель которых больше 1?

Задачу решили: 76
всего попыток: 104
Задача опубликована: 13.12.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.

Задачу решили: 129
всего попыток: 175
Задача опубликована: 21.12.10 08:00
Прислал: Busy_Beaver img
Источник: Мексиканская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите остаток от деления числа 11+1111+111111+...+11111111111111111111 на 100. (В последнем числе 10 единиц в основании степени и 10 — в показателе.)

Задачу решили: 102
всего попыток: 288
Задача опубликована: 27.12.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько существует натуральных чисел, делящихся нацело на 210 и имеющих ровно 210 различных натуральных делителей?

Задачу решили: 59
всего попыток: 154
Задача опубликована: 31.01.11 08:00
Прислал: Busy_Beaver img
Источник: Всеукраинская олимпиада школьников
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Какое наибольшее число точек можно выбрать на отрезке [0;1] так, чтобы на любом отрезке [a;b], который является частью отрезка [0;1], было не больше 1+100(ba)2 точек?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.