img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 119
всего попыток: 184
Задача опубликована: 11.06.12 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: azat

Даны две концентрические окружности. Хорда большей из них является касательной к меньшей окружности и имеет длину 100. Чему равна площадь кольца между двумя окружностями. Ответ округлите до ближайшего целого.

m6.png

 

Задачу решили: 56
всего попыток: 74
Задача опубликована: 10.12.14 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: azat

На доске  написаны  n последовательных натуральных чисел, начиная с 1. Когда было стерто одно число, то оказалось, что среднее арифметическое стало равным 35 7/17. Какое число стерли?

Задачу решили: 36
всего попыток: 75
Задача опубликована: 27.07.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Три вершины треугольника с длинами сторон  a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20.  Найдите минимальное возможное значение произведения a•b•c.

Задачу решили: 43
всего попыток: 52
Задача опубликована: 27.04.20 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Одна из вершин треугольника имеет координаты (7, 1), другая вершина лежит на оси X, третья – на линии графика функции y=x. Определите минимально возможное значение периметра этого треугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.