Лента событий:
vcv решил задачу "Удачные дроби" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
55
Одна прямая разрезает один n-угольник на 10 треугольников. Найдите максимально возможное значение n.
Задачу решили:
13
всего попыток:
23
Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4.
Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно.
Задачу решили:
11
всего попыток:
13
Все точки плоскости покрашены в ДВА цвета. Докажите, что на этой плоскости существует равносторонний треугольник, все вершины которого – одного цвета.
Задачу решили:
11
всего попыток:
12
Внешняя область правильного n-угольника разбивается на f(n) частей по такому принципу: две точки принадлежат одной и той же части, тогда и только тогда, когда они видят целиком одни и те же стороны n-угольника. Например, точки A и B на рисунке видят целиком одни и те же две стороны:
Найдите f(100)+f(101).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|