Лента событий:
user033 решил задачу "Сумма делителей 2025" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
55
Одна прямая разрезает один n-угольник на 10 треугольников. Найдите максимально возможное значение n.
Задачу решили:
13
всего попыток:
23
Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4.
Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно.
Задачу решили:
11
всего попыток:
13
Все точки плоскости покрашены в ДВА цвета. Докажите, что на этой плоскости существует равносторонний треугольник, все вершины которого – одного цвета.
Задачу решили:
11
всего попыток:
12
Внешняя область правильного n-угольника разбивается на f(n) частей по такому принципу: две точки принадлежат одной и той же части, тогда и только тогда, когда они видят целиком одни и те же стороны n-угольника. Например, точки A и B на рисунке видят целиком одни и те же две стороны:
Найдите f(100)+f(101).
Задачу решили:
14
всего попыток:
16
Перед вами квадратная сетка из 6×6 точек, и на ней – пример замкнутой ломаной, которая обладает следующими свойствами:
Легко видеть, что суммарная длина её вертикальных звеньев больше суммарной длины её горизонтальных звеньев. А для каких квадратных сеток из N×N точек в пределах 2≤Ν≤13, существует замкнутая ломаная, у которой выполняются описанные выше свойства, а также суммарная длина её вертикальных звеньев равна суммарной длине её горизонтальных звеньев? В качестве ответа введите строку из чисел – подходящих N (по возрасстанию). Например, если подходящими являются только сетки 2×2 и 13×13, то ответ выглядит так: 213.
Задачу решили:
15
всего попыток:
17
На треугольной сетке из точек, расположенных в виде равностороннего треугольника, на стороне которого находятся N точек, построена замкнутая ломаная, обладающая следующими свойствами: • Её звенья лежат строго на линиях сетки, а вершины – в её узлах. • Она проходит ровно по одному разу через каждый узел сетки.
На рисунке изображён пример такой ломаной при N=5.
При каких значениях N в пределах 2 ≤ N ≤ 30 это возможно? Введите в ответе сумму этих значений.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|