Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
62
всего попыток:
267
Команда IF A=B HANG 1 на языке программирования MUMPS означает: "если A=B, то выполнить задержку программы на 1 секунду". В языке MUMPS почти нет понятия ТИПА ДАННЫХ (текстовые, целые числа, плавающая точка, короткие, длинные, логические и т.п.). Можно смело смешивать все данные, и всё будет выполняться по какой-то "естественной" логике каждой конкретной операции. Например, выражение 123 можно одновременно рассматривать и как число, и как строку. Кроме того, почти каждую команду можно писать не полностью, а только её начальные буквы. Например, вместо команды HANG можно писать HAN, или HA или только одну букву H. Длина написанной выше команды — 13 символов. Напишите эту же команду прописными латинскими буквами в кратчайшем виде.
Задачу решили:
49
всего попыток:
85
Найти минимальное натуральное число n>2010, удовлетворяющее условию: в любом множестве из n целых чисел существует подмножество из 2010 чисел, сумма которых делится на 2010.
Задачу решили:
61
всего попыток:
105
Назовём число "зелёным", если его можно представить как сумму последовательных (не меньше двух) натуральных чисел. Сколько существует не зелёных чисел между 10000 и 100000 включительно?
Задачу решили:
52
всего попыток:
78
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло больше людей чем в предыдущем. Ввести сумму всех возможных значений N (одно и то же значение N считать только один раз).
Задачу решили:
39
всего попыток:
109
Найдите количество упорядоченных пар чисел (a,b) (0≤a,b≤10), для которых существует многочлен P(x) с целочисленными коэффициентами, и P(4)=a, P(11)=b?
Задачу решили:
27
всего попыток:
139
Рассмотрим простое число p и трёхчлен: 2x² + 11x + 1. Обозначим: f(p) - количество целых неотрицательных x, не превосходящих p, при которых трёхчлен делится на p. g(p) - сумма всех этих x для данного p. Найдите сумму g(p) по всем таким p, для которых f(p)=1.
Задачу решили:
8
всего попыток:
185
При некоторых положениях трёх стрелок часов (будем считать, что все стрелки двигаются плавно), одна из стрелок делит попалам угол между двумя другими стрелками. Сколько существует таких положений? [Угол α между двумя другими стрелками будем считать только: 0°<α<180°, и стрелка-биссектриса делит его на два одинаковых угла 0°<α/2<90°] Пример искомого положения можно наблюдать ровно в 1:12:00.
Задачу решили:
30
всего попыток:
61
Найдите количество пар действительных чисел b и c таких, что оба уравнения x3+bx2+cx+10=0 и y3+(b+21)y2+(14b+c+147)y+(49b+7c+353)=0 имеют по три различных целых корня.
Это открытая задача
(*?*)
Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.
Задачу решили:
38
всего попыток:
44
Три деда примерно одного возраста (разность их возрастов не более 10 лет). Их возрасты – натуральные числа, являющиеся корнями уравнения: x3 - Ax2 + 14838x – C = 0, где A и C - также натуральные числа. Найдите число C.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|