img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 17
Задача опубликована: 15.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163.

Задачу решили: 13
всего попыток: 15
Задача опубликована: 17.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Дано: K=99, N=189, и L имеет минимально возможное вещественное значение. Найдите синус меньшего угла между сторонами прямоугольников.

Задачу решили: 15
всего попыток: 18
Задача опубликована: 24.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Укажите количество примитивных пифагоровых треугольников ABC, у которых тангенс каждого из углов A/2, B/2, C/2 представим в виде p/q, где p и q целые, и 0 < p ≤ q ≤ 10.

Задачу решили: 18
всего попыток: 24
Задача опубликована: 01.05.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Из каждой вершины треугольника проведены к противоположной стороне две чевианы, делящие её (противоположную сторону) на 3 равных отрезка.

Недетская классика

Исходный треугольник разделился на 19 частей: 12 треугольников, 3 четырёхугольника, 3 пятиугольника и 1 шестиугольник.

Найдите отношение площади 6-угольника к площади 5-угольника.

Задачу решили: 19
всего попыток: 30
Задача опубликована: 21.08.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для каждого натурального N>1 определены:
f(N) – произведение всех натуральных делителей N.
g(N) – логарифм f(N) по основанию Ν.

Найдите максимальное N, меньшее 12345, для которого g(N) нецело.

Задачу решили: 15
всего попыток: 79
Задача опубликована: 23.09.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите минимальную сумму таких натуральных a и b (a>b), что на эллипсе:

x2/a2 + y2/b2 = 1

лежат ровно 36 точек с целочисленными координатами.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.