img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon предложил задачу "Уравнение в целых числах" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 10
всего попыток: 21
Задача опубликована: 21.03.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Если существует взаимно однозначное соответствие между элементами двух множеств A и B, то говорят, что эти два множества имеют одинаковую мощность.

Иначе, одно из них обязательно имеет одинаковую мощность с каким-то подмножеством другого множества. Тогда говорят, что первое множество имеет меньшую мощность, чем второе.

Рассмотрим следующие множества:

  1. Множество точек интервала (0, 1).
  2. Множество точек отрезка [0, 1].
  3. Множество точек шара x2 + y2 + z2 < 52.
  4. Множество всех вещественных чисел.
  5. Множество всех вещественных функций, определённых на [0, 1].
  6. Множество всех непрерывных вещественных функций, определённых на [0, 1].
  7. Множество всех положительных чётных чисел, меньших ста.
  8. Множество всех положительных нечётных чисел, меньших ста.
  9. Множество наибольшей мощности непересекающихся букв Т на плоскости.
  10. Множество наибольшей мощности непересекающихся букв М на плоскости.

Замечание. Здесь "буква Т" состоит из двух отрезков нулевой ширины, а "буква М" – из четырёх таких отрезков.

Дополните следующую таблицу

Сравнение множеств

крестиками во всех клетках, стоящих на пересечении i-й строки и j-го ,столбца, если множества с номерами i и j имеют одинаковую мощность.

Сколько всего крестиков окажется в таблице?

Задачу решили: 17
всего попыток: 20
Задача опубликована: 24.03.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

a1, a2, a3, ..., a10 – действительные числа, хотя бы одно из которых не равно нулю.

Σ2 = a12 + a22 + a32 + ... + a102  (т.е. сумма их квадратов)

σ2 = a1a2 + a1a3 + a1a4 + ... + a9a10  (т.е. сумма произведений каждого с каждым)

Найдите максимально возможное значение σ22

 

Задачу решили: 5
всего попыток: 14
Задача опубликована: 26.03.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольную сетку из 1+2+3+...+n точек, расположенных в виде равностороннего треугольника с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один равносторонний треугольник (любого наклона).

Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9).

Задачу решили: 9
всего попыток: 26
Задача опубликована: 28.03.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим квадратную сетку из n2 точек, расположенных в виде квадрата с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один квадрат (любого наклона).

Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7).

Задачу решили: 20
всего попыток: 29
Задача опубликована: 31.03.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

a1, a2, a3, ..., a10 – действительные числа, хотя бы одно из которых не равно нулю.

Σ2 = a12 + a22 + a32 + ... + a102  (т.е. сумма их квадратов)

σ2 = a1a2 + a1a3 + a1a4 + ... + a9a10  (т.е. сумма произведений каждого с каждым)

Найдите минимально возможное значение σ22

Задачу решили: 11
всего попыток: 22
Задача опубликована: 04.04.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

169 точек, раположенные квадратом 13×13, окрашены m цветами так, что ни одна ЧЕТВЁРКА точек одного цвета не составляет квадрат. Чему равен минимальный m?

Задачу решили: 10
всего попыток: 12
Задача опубликована: 30.06.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish

Неперпендикулярные прямые u и v пересекаются в точке M0. Отличная от неё точка M1 находится на прямой u.

Рассмотрим последовательность отрезков одинаковой длины M0M1, M1M2, M2M3, M3M4, ... и т.д., где местоположения точек M2, M3, M4, и т.д. определим на прямых v и u поочерёдно следующим образом.

• Из нечётной точкм M2k-1 на прямой u опустим перпендикуляр M2k-1P2k-1 на прямую v. Определим точку M2k на прямой v таким образом, что точка P2k-1 будет серединой отрезка M2k-2M2k.

• Из чётной точкм M2k на прямой v опустим перпендикуляр M2kP2k на прямую u. Определим точку M2k+1 на прямой u таким образом, что точка P2k будет серединой отрезка M2k-1M2k+1.

Зигзаг

Пусть острый угол между прямыми u и v равен α. Определим функцию f(α) как наименьшее натуральное число n, такое, что точка Mn совпадёт с точкой M0. Если такое число не существует, определим f(α)=-1.

Найдите f(32°)+f(33°).

Замечание. Местоположения некоторых точек могут совпадать.

Задачу решили: 10
всего попыток: 16
Задача опубликована: 14.07.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2816
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish

Рассмотрим 10-мерный гиперкуб с ребром длиной 25, сложенный из 2510 единичных гиперкубиков двух цветов: чёрных и белых. Введём такую систему координат, что:

  • Все координаты центров всех единичных гиперкубиков – целочисленны.
  • Начало координат находится в центре центрального единичного гиперкубика.

Таким образом, каждый из единичных гиперкубиков будет однозначно определяться 10-мерным вектором: координатами его центра. Каждая координата принимает целое значение в пределах: -12 ≤ xi ≤ 12.

Сложим гиперкуб следующим образом.

Первоначальный (внутренний, нулевой) слой: Все единичные гиперкубики, для которых соответствующие векторы имеют не меньше трёх равных нулю координат. Их выбираем чёрного цвета.

Следующий (первый) слой: Все единичные гиперкубики, которые являются соседями гиперкубиков нулевого слоя, а сами нулевому слою не принадлежат. Их выбираем белого цвета.

Два единичных гиперкубика назовём "соседними", если они имеют хотя бы одну общую (10-мерную) точку. На рисунке

v

изображены примеры таких соседей в 3-мерном пространстве.

Следующий (второй) слой: Все единичные гиперкубики, которые являюися соседями гиперкубиков первого слоя, а сами не принадлежат ни нулевому слою, ни первому. Их выбираем опять чёрного цвета. И так далее, пока не будет сложен весь гиперкуб: в каждом слое выбираются все соседи предыдущего слоя, которые сами не принадлежат ни одному из предыдущих слоёв, и они выбираются другого цвета, чем гиперкубики предыдущего слоя.

Определите цвета единичных гиперкубиков, которым соответствуют векторы:

  1. (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
  2. (10, 5, -8, 5, 5, 9, -10, -9, -3, -11)
  3. (8, 11, 4, -3, 0, -11, 11, -5, 8, 0)
  4. (8, 9, -5, -8, 2, 3, 6, 9, -8, 9)
  5. (-3, 4, 10, 7, -9, -4, 4, 9, 1, 0)
  6. (-11, -8, -10, -9, 1, -7, 6, -2, 7, 2)
  7. (-6, 0, 2, 6, 8, 6, -3, 9, -12, 8)
  8. (9, 4, -9, -8, -4, 5, 8, -1, 11, -11)
  9. (3, -4, 6, -4, 5, 9, -1, 3, 5, 3)
  10. (-12, 8, -10, -7, 2, -11, 11, 4, 8, 8)
  11. (3, 1, 6, 3, -7, 8, -4, 10, -4, -12)
  12. (4, 0, 5, 6, -5, -12, 8, 12, 0, -7)

Введите ответ в виде последовательности нулей и единиц, где чёрному цвету соотвествует единица, а белому – ноль.

 

Задачу решили: 10
всего попыток: 12
Задача опубликована: 08.08.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Все точки плоскости покрашены в ДВА цвета. Докажите, что на этой плоскости существует равносторонний треугольник, все вершины которого – одного цвета.

Задачу решили: 18
всего попыток: 32
Задача опубликована: 15.08.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2646
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Дана квадратная решётка n×n точек. Расстояния между соседними точками равны 1.

Найдите площадь объединения n×n кругов радиуса 1 с центрами в точках решётки, если n=7.

Круги на квадратной решётке

Результат умножьте на 1000 и введите целую часть произведения.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.