![]()
Лента событий:
solomon предложил задачу "Уравнение в целых числах" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
21
Если существует взаимно однозначное соответствие между элементами двух множеств A и B, то говорят, что эти два множества имеют одинаковую мощность. Иначе, одно из них обязательно имеет одинаковую мощность с каким-то подмножеством другого множества. Тогда говорят, что первое множество имеет меньшую мощность, чем второе. Рассмотрим следующие множества:
Замечание. Здесь "буква Т" состоит из двух отрезков нулевой ширины, а "буква М" – из четырёх таких отрезков. Дополните следующую таблицу крестиками во всех клетках, стоящих на пересечении i-й строки и j-го ,столбца, если множества с номерами i и j имеют одинаковую мощность. Сколько всего крестиков окажется в таблице? ![]()
Задачу решили:
17
всего попыток:
20
a1, a2, a3, ..., a10 – действительные числа, хотя бы одно из которых не равно нулю. Σ2 = a12 + a22 + a32 + ... + a102 (т.е. сумма их квадратов) σ2 = a1a2 + a1a3 + a1a4 + ... + a9a10 (т.е. сумма произведений каждого с каждым) Найдите максимально возможное значение σ2/Σ2.
![]()
Задачу решили:
5
всего попыток:
14
Рассмотрим треугольную сетку из 1+2+3+...+n точек, расположенных в виде равностороннего треугольника с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один равносторонний треугольник (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9). ![]()
Задачу решили:
9
всего попыток:
26
Рассмотрим квадратную сетку из n2 точек, расположенных в виде квадрата с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один квадрат (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7). ![]()
Задачу решили:
20
всего попыток:
29
a1, a2, a3, ..., a10 – действительные числа, хотя бы одно из которых не равно нулю. Σ2 = a12 + a22 + a32 + ... + a102 (т.е. сумма их квадратов) σ2 = a1a2 + a1a3 + a1a4 + ... + a9a10 (т.е. сумма произведений каждого с каждым) Найдите минимально возможное значение σ2/Σ2. ![]()
Задачу решили:
11
всего попыток:
22
169 точек, раположенные квадратом 13×13, окрашены m цветами так, что ни одна ЧЕТВЁРКА точек одного цвета не составляет квадрат. Чему равен минимальный m? ![]()
Задачу решили:
10
всего попыток:
12
Неперпендикулярные прямые u и v пересекаются в точке M0. Отличная от неё точка M1 находится на прямой u. Рассмотрим последовательность отрезков одинаковой длины M0M1, M1M2, M2M3, M3M4, ... и т.д., где местоположения точек M2, M3, M4, и т.д. определим на прямых v и u поочерёдно следующим образом. • Из нечётной точкм M2k-1 на прямой u опустим перпендикуляр M2k-1P2k-1 на прямую v. Определим точку M2k на прямой v таким образом, что точка P2k-1 будет серединой отрезка M2k-2M2k. • Из чётной точкм M2k на прямой v опустим перпендикуляр M2kP2k на прямую u. Определим точку M2k+1 на прямой u таким образом, что точка P2k будет серединой отрезка M2k-1M2k+1. Пусть острый угол между прямыми u и v равен α. Определим функцию f(α) как наименьшее натуральное число n, такое, что точка Mn совпадёт с точкой M0. Если такое число не существует, определим f(α)=-1. Найдите f(32°)+f(33°). Замечание. Местоположения некоторых точек могут совпадать. ![]()
Задачу решили:
10
всего попыток:
16
Рассмотрим 10-мерный гиперкуб с ребром длиной 25, сложенный из 2510 единичных гиперкубиков двух цветов: чёрных и белых. Введём такую систему координат, что:
Таким образом, каждый из единичных гиперкубиков будет однозначно определяться 10-мерным вектором: координатами его центра. Каждая координата принимает целое значение в пределах: -12 ≤ xi ≤ 12. Сложим гиперкуб следующим образом. Первоначальный (внутренний, нулевой) слой: Все единичные гиперкубики, для которых соответствующие векторы имеют не меньше трёх равных нулю координат. Их выбираем чёрного цвета. Следующий (первый) слой: Все единичные гиперкубики, которые являются соседями гиперкубиков нулевого слоя, а сами нулевому слою не принадлежат. Их выбираем белого цвета. Два единичных гиперкубика назовём "соседними", если они имеют хотя бы одну общую (10-мерную) точку. На рисунке изображены примеры таких соседей в 3-мерном пространстве. Следующий (второй) слой: Все единичные гиперкубики, которые являюися соседями гиперкубиков первого слоя, а сами не принадлежат ни нулевому слою, ни первому. Их выбираем опять чёрного цвета. И так далее, пока не будет сложен весь гиперкуб: в каждом слое выбираются все соседи предыдущего слоя, которые сами не принадлежат ни одному из предыдущих слоёв, и они выбираются другого цвета, чем гиперкубики предыдущего слоя. Определите цвета единичных гиперкубиков, которым соответствуют векторы:
Введите ответ в виде последовательности нулей и единиц, где чёрному цвету соотвествует единица, а белому – ноль.
![]()
Задачу решили:
10
всего попыток:
12
Все точки плоскости покрашены в ДВА цвета. Докажите, что на этой плоскости существует равносторонний треугольник, все вершины которого – одного цвета. ![]()
Задачу решили:
18
всего попыток:
32
Дана квадратная решётка n×n точек. Расстояния между соседними точками равны 1. Найдите площадь объединения n×n кругов радиуса 1 с центрами в точках решётки, если n=7. Результат умножьте на 1000 и введите целую часть произведения.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|