Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
47
всего попыток:
62
На стороне AB треугольника ABC находится точка D. На стороне BC того же треугольника находится точка E. Продолжение отрезка DE пересекается с продолжением стороны AC в точке F (точка C находися между точками A и F). Дано: |AB| = 35, |BC| = 30, |CA| = 30, |BD| = 7, |BE| = 9. Найдите длину отрезка CF.
Задачу решили:
43
всего попыток:
86
Сколько есть чисел, состоящих из цифр от 1 до 9 (каждая цифра входит 1 раз), которые делятся нацело на 99?
Задачу решили:
29
всего попыток:
64
У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?
Это открытая задача
(*?*)
Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.
Задачу решили:
38
всего попыток:
44
Три деда примерно одного возраста (разность их возрастов не более 10 лет). Их возрасты – натуральные числа, являющиеся корнями уравнения: x3 - Ax2 + 14838x – C = 0, где A и C - также натуральные числа. Найдите число C.
Задачу решили:
45
всего попыток:
59
Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?
Задачу решили:
25
всего попыток:
31
Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков: |OA1|² = |OA0| • |OA2|. Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков: |OA2|² = |OA1| • |OA3|. И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
Задачу решили:
23
всего попыток:
31
В квадрате ABCD помечены середины всех 4-х его сторон. Какое минимальное количество линий нужно провести с помощью линейки без делений, чтобы разделить квадрат на 5 равновеликих частей?
Задачу решили:
4
всего попыток:
53
Дан квадрат ABCD. Какое минимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей?
Задачу решили:
24
всего попыток:
75
Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|